|
|
|
|
|
|
GC-MS and FTIR Analysis and Identification of Moldy Tobacco Leaves |
YE Yan-qing1, ZHANG Hai-yu1, 2, SHEN Di1, 2, LE Zhi-wei3, WU Yu-ping4, KONG Guang-hui4, ZHANG Jian-rong2, TIAN Meng-yu2, CHEN Jian-hua2, ZHANG Cheng-ming2*, WANG Jin2* |
1. School of Chemistry and Environment, Yunnan Minzu University, Kunming 650504, China
2. Technical Center, Yunnan Tobacco Industry Co., Ltd., Kunming 650106, China
3. Kunming Cigarette Factory,Hongyun Honghe Tobacco (Group) Co., Ltd., Kunming 650231, China
4. Yunnan Tobacco Agricultural Science Research Institute, Kunming 650031,China
|
|
|
Abstract GC-MS and FTIR analysis, combined with multivariate analysis methods such as PCA and PLS, were used to evaluate and identify moldy tobacco leaves. GC-MS analysis screened 9 markers of tobacco leaf mold, including 2-ethylhexanol. The linear discriminant equation constructed by 9 key compounds, such as 4-hydroxybutyrolactone, can accurately identify tobacco leaf mold, with an initial validation accuracy of 100% and a cross-validation accuracy of 98.7%. FTIR studies have shown that the moldy process of tobacco leaves consumes a large amount of carbohydrates, proteins, and lipids. GC-MS and FTIR, combined with PCA and PLS-DA respectively, can effectively distinguish moldy tobacco leaves.
|
Received: 2023-12-06
Accepted: 2024-03-20
|
|
Corresponding Authors:
ZHANG Cheng-ming, WANG Jin
E-mail: wangjin@iccas.ac.cn; 13987643543@139.com
|
|
[1] CHEN Wan-nian, SONG Ji-zhen, FAN Jian-qiang, et al(陈万年, 宋纪真, 范坚强, 等). Tobacco Technology(烟草科技), 2003, (7): 9.
[2] QI Ling-feng, ZHUO Si-chu, SONG Ji-zhen, et al(齐凌峰, 卓思楚, 宋纪真, 等). Anhui Agricultural Science(安徽农业科学), 2010, 38(1): 155.
[3] QI Ling-feng, ZHUO Si-chu, SONG Ji-zhen, et al(齐凌峰, 卓思楚, 宋纪真, 等). Hubei Agricultural Science(湖北农业科学), 2014, 53(1): 106.
[4] CHEN Yue-li, XIAO Ming-li, YANG Qing(陈越立, 肖明礼, 杨 庆). Guangdong Chemical Industry(广东化工), 2011, 38(4): 49.
[5] QIU Li-you, ZHAO Ming-qin, YUE Mei, et al(邱立友, 赵铭钦, 岳 梅, 等). Tobacco Technology(烟草科技), 2003, (3): 14.
[6] YC/T 475-2013. Tobacco and Tobacco Producs-Molding Control Guid(烟草及烟草制品霉变控制指南). Beijing: China National Tobacco Corproration(北京:中国烟草总公司), 2013.
[7] Zhang H M, Wang J, Tian X J, et al. Journal of Food Engineering, 2007, 82:403.
[8] QI Da-wei, LIN Hua-qing, SHA Yun-fei, et al(戚大伟,林华清,沙云菲,等). Tobacco Technology(烟草科技),2013,(5): 5.
[9] Larsen T, Axelsen J, Ravn H W. Journal of Chromatography A, 2004, 1026(1): 301.
[10] Li S P, Lai C M, Gong Y, et al. Journal of Chromatography A, 2004, 1306(2): 239.
[11] Sha Y F, Deng C H, Liu B Z. Journal of Chromatography A, 2008, 1198/1199: 27.
[12] HUANG Long, WANG Jin-yuan, LUO Cheng-hao, et al(黄 龙,王进元,罗诚浩,等). Tobacco Technology(烟草科技), 2006, (10): 41.
[13] GUO Le-le, ZHANG Xiao-ping, LIU Fang, et al(郭乐乐,张晓平,刘 芳,等). Tobacco Technology(烟草科技), 2020, 53(2): 27.
[14] ZHOU Ji-yue, YANG Pan-pan, LIU Lei, et al(周继月,杨盼盼,刘 磊,等). Chinese Journal of Tobacco(中国烟草学报),2018,24(1): 6.
[15] CHEN Zhao-lin, ZHANG Yi, WANG Shi-yu,et al(陈兆麟,张 奕,王诗羽,等). China Computer & Communication(信息与电脑), 2022,34(22): 118.
[16] Liu K W, Zhang C. Food Chemistry, 2021,334:127615.
[17] Qi J, Zhou Q, Huang D, et al. Microbial Cell Factories, 2023, 22(1):230.
[18] Oktaviary R, Nugrahani I, Ibrahim S, et al. Indonesian Journal of Pharmacy, 2020, 31(2): 78.
[19] Soares R, Lima A M F, Oliveira R V B, et al. Polymer Degradation & Stability, 2005, 90(3): 449.
[20] Diao Y, Song M, Zhang Y, et al. Carbohydrate Polymers, 2017, 169: 92.
[21] Ke-Chang Hung, Chen Y L, Wu J H. Polymer Degradation and Stability, 2012, 97: 1680.
[22] Sunesson A L S, Vaes W H J, Nilsson C A, et al. Applied and Environmental Microbiology, 1995, 61(8): 2911.
[23] Kleofas V, Popa F, Fraatz M A, et al. Flavour and Fragrance Journal,2015, 30(5):381.
[24] Benito M J, Núñez F, Córdoba M G, et al. Food Microbiology 2005, 22(6):513.
[25] Laraba I, McCormick S P, Vaughan M M, et al. Fungal Genet Biol,2020, 144: 103466.
[26] Simonato B, Lorenzini M, Zapparoli G. LWT-Food Science and Technology,2021, 138: 110620.
[27] LópezL, EcheverriaG, Usall J, et al. Postharvest Biology and Technology 2015, 99:120.
[28] Piesik D, Pańka D, Delaney K J, et al. Journal of Plant Physiology,2011, 168(9): 878.
[29] Zhou J, Cheng Y, Yu L, et al. Applied Microbiology and Biotechnology,2022, 106: 131.
[30] Liu K, Zhang C, Xu J, et al. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(6): 5802.
[31] YC/T 159-2002. Tobacco and Tobacco Products-Determination of Water Soluble Sugars-Continuous Flow Method(烟草及烟草制品水溶性糖的测定——连续流动法). Beijing: China National Tobacco Corporation(北京:中国烟草总公司), 2002.
[32] YC/T 249-2008. Tobacco and Tobacco Products-Determination of Protein-Continuous Flow Method(烟草及烟草制品蛋白质的测定——连续流动法). Beijing: China National Tobacco Corporation(北京:中国烟草总公司), 2002.
[33] WU De-zhuan, ZHOU Ji-heng, LI Zhang-hai, et al(武德传,周冀衡,李章海,等). Chinese Tobacco Science(中国烟草科学), 2010,31(3): 4.
[34] WU Shun, LOU Hong-ming, MO Xian-ke, et al(吴 舜,楼宏铭,莫贤科,等). Tobacco Technology(烟草科技),2014,(10): 4.
|
[1] |
JIA Li-fan1, 2, SONG Lu-lu1, 2, DU Yi-fa3, ZHANG Yun-hong4, PAN Jian-ming5, ZHOU Yong-quan1, ZHU Fa-yan1*. In-Situ FTIR Study on the Crystallization Process of Supersaturated
Magnesium Borate Solution Process[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3353-3363. |
[2] |
TIE Wei-bo1, WANG Qi1*, GAN Xiu-shi2, WANG Xu2, HUANG Jun-chen1, YANG Song-tao1, ZHANG Song1. FTIR Quantitative Analysis of Evolution and Interaction of Plastic Layer in Coking Process[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3553-3559. |
[3] |
ZHANG Yao-yao1, 2, FU Ying-chun1, 2, WEI Shu-ya1, 2*. The Identification and Analysis of the Modern Binding Media Based on Multiple Analytical Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2785-2794. |
[4] |
LÜ Shu-xian. A Study on the Non-Destructive Method of Identifying Chinese Traditional Handmade Paper With Attenuated Total Reflection Fourier Transform Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2450-2458. |
[5] |
ZHANG Xiao-dong1, KANG Hong-dong1, LI Bing-hui2, ZHANG Shuo1*, HAN Lei1. Spectroscopic Differences in Different Solvent Pretreated Coals in the Presence of ScCO2 and Their Mechanisms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2657-2666. |
[6] |
YUAN Hui, LIU Dan, XU Guang-tong*. Determination of Trace Gaseous Contaminants in FCV Hydrogen Fuel by Modular Fourier Transform Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(03): 853-858. |
[7] |
LIU Bi-wang1, LU Rong-rong2, CAO Yue2, WANG Xiu-wen3, ZHAO Huan4, HAO Miao3, MA Xiao-xia3, MA Yan-miao2, WANG Yong-hui2. FTIR Study on the Effect of DangGuiTongFengFang on Hyperuricemia Nephropathy in Mice[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(03): 800-806. |
[8] |
GUO Ya-fei1, CAO Qiang1, YE Lei-lei1, ZHANG Cheng-yuan1, KOU Ren-bo1, WANG Jun-mei1, GUO Mei1, 2*. Double Index Sequence Analysis of FTIR and Anti-Inflammatory Spectrum Effect Relationship of Rheum Tanguticum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 188-196. |
[9] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[10] |
TIAN Ze-qi1, WANG Zhi-yong1, YAO Jian-guo1, GUO Xu1, LI Hong-dou1, GUO Wen-mu1, SHI Zhi-xiang2, ZHAO Cun-liang1, LIU Bang-jun1*. Quantitative FTIR Characterization of Chemical Structures of Highly Metamorphic Coals in a Magma Contact Zone[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2747-2754. |
[11] |
ZHANG Xiao-xu1, LIN Xiao-xian3, ZHANG Dan2, ZHANG Qi1, YIN Xue-feng2, YIN Jia-lu3, 4, ZHANG Wei-yue4, LI Yi-xuan1, WANG Dong-liang3, 4*, SUN Ya-nan1*. Study on the Analysis of the Relationship Between Functional Factors and Intestinal Flora in Freshly Stewed Bird's Nest Based on Fourier Transform Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2452-2457. |
[12] |
WANG Yu-hao1, 2, LIU Jian-guo1, 2, XU Liang2*, DENG Ya-song2, SHEN Xian-chun2, SUN Yong-feng2, XU Han-yang2. Application of Principal Component Analysis in Processing of Time-Resolved Infrared Spectra of Greenhouse Gases[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2313-2318. |
[13] |
SU Ling1, 2, BU Ya-ping1, 2, LI Yuan-yuan2, WANG Qi1, 2*. Study on the Prediction Method of Pleurotus Ostreatus Protein and
Polysaccharide Content Based on Fourier Transform Infrared
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1262-1267. |
[14] |
ZHOU Ao1, 2, YUE Zheng-bo1, 2, LIU A-zuan1, 2, GAO Yi-jun3, WANG Shao-ping3, CHUAI Xin3, DENG Rui1, WANG Jin1, 2*. Spectral Analysis of Extracellular Polymers During Iron Dissimilar
Reduction by Salt-Tolerant Shewanella Aquimarina[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1320-1328. |
[15] |
FENG Yu, ZHANG Yun-hong*. Rapid ATR-FTIR Principal Component Analysis of Commercial Milk[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 838-841. |
|
|
|
|