|
|
|
|
|
|
Progress in the Measurement of Thermoacoustic Oscillations in the
Combustion Field of Gas Turbines |
LIU Yan1, 2, 3, YANG Xiao-fan1, 2, XIONG Yan1, 2, 3, GUO Mu-lin1, 3, CHENG Ze-mu1, 2, SHAO Wei-wei1, 2, XU Xiang1, 2 |
1. Key Laboratory of Advanced Energy and Power, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
2. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
3. School of Mechanical Engineering, Jiangsu Ocean University, Lianyungang 222005, China
|
|
|
Abstract Hydrogen-fueled gas turbines are the most promising research direction at present. Although hydrogen fuel, especially green hydrogen energy, can lower greenhouse gas emissions and enhance energy efficiency, the thermoacoustic oscillation phenomena are easily generated by hydrogen energy's high combustion rate and quick chemical reaction rate during combustion. The coupling of an acoustic wave and heat release at a phase difference of less than 90° results in thermoacoustic oscillation, which can wear down a gas turbine and even harm its components. Flame heat release variation, acoustic pressure pulsation, flow field fluctuation in the combustion chamber, etc. are some of the sources of thermoacoustic oscillation. The coupling analysis of these variables can increase our comprehension of thermoacoustic oscillation and give us a theoretical foundation for forecasting it. The parameters used in the research of thermoacoustic oscillations include dynamic pressure, flame heat release, temperature, equivalent ratio, and velocity, and the related test techniques should be capable of high-frequency measurements of them. The measurement means of dynamic pressure mainly include pressure sensors and microphones. Due to the fast time domain response and obvious dynamic characteristics of pressure, it is the key parameter of the thermoacoustic coupling effect and is most widely studied. OH, chemiluminescence, or fluorescence signals are mostly used to characterize the flame heat release, and the measurement methods include Intensified CCD(ICCD), a photomultiplier tube(PMT), planar-laser-induced fluorescence(PLIF), etc. Tunable diode laser absorption spectroscopy(TDLAS), PLIF, Raman spectroscopy (RS), and other optical diagnostic techniques for temperature measurement are available in addition to the widely used thermocouples. Since the equivalence ratio directly impacts combustion parameters, it is challenging to measure dynamic changes in the equivalence ratio using conventional methods like flue gas analyzers. TDLAS, PLIF, laser-induced breakdown spectroscopy(LIBS), and other optical measurement techniques were later developed, and they are all capable of obtaining dynamic changes in the equivalence ratio. Velocity pulsation is a parametric quantity that acts directly on thermoacoustic oscillations, and measurement techniques include one-dimensional dual microphone velocimetry, hot-wire anemometry, laser Dopplervelocimetry (LDV), and multi-dimensional particle image velocimetry measurement (PIV), schlieren, etc. So far, most of the techniques on thermoacoustic oscillation measurement are relatively well developed. This paper lists the principles of these combustion diagnostic techniques and their applications to thermoacoustic oscillation or unstable combustion phenomena, and summarizes the development and prospects of thermoacoustic oscillation measurement.
|
Received: 2023-08-22
Accepted: 2024-01-25
|
|
|
[1] Roy R, Nguyen K, Stuart T, et al. Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, 2022, 3B: 03BT04A001.
[2] Beita J, Talibi M, Sadasivuni S, et al. Hydrogen, 2021, 2(1): 33.
[3] Rayleigh. Nature, 1878, 18(455): 319.
[4] Nair V, Thampi G, Sujith R I. Journal of Fluid Mechanics, 2014, 756: 470.
[5] Ren Y, Li S, Cui W, et al. Combustion and Flame, 2017, 176: 479.
[6] HU Xue-chao, BI Xiao-tian, LIU Ce, et al(扈学超,毕笑天,刘 策,等). Journal of Tsinghua University(Science and Technology)[清华大学学报(自然科学版)], 2023, 63(4): 572.
[7] Lieuwen T, Neumeier Y. Proceedings of the Combustion Institute, 2002, 29: 99.
[8] REN Le-le, XIONG Yan, LIU Zhi-gang, et al(任乐乐,熊 燕,刘志刚,等). Journal of Engineering for Thermal Energy and Power(热能动力工程), 2023, 38(5): 30.
[9] Ayoolan B O, Balachandran R, Frank J H, et al. Combustion and Flame, 2006, 144(1-2): 1.
[10] Giezendanner-Thoben R, Meier U, Meier W, et al. Flow Turbulence and Combustion, 2005, 75(1-4): 317.
[11] Najm H N, Paul P H, Mueller C J, et al. Combustion and Flame, 1998, 113(3): 312.
[12] Paul P H, Najm H N. Proceedings of the 27th International Symposium on Combustion, Univ Colorado, Boulder, Co, 1998, 43.
[13] Kariuki J, Dowlut A, Yuan R, et al. Proceedings of the Combustion Institute, 2015, 35: 1443.
[14] Tashiro Y, Biwa T, Yazaki T. Review of Scientific Instruments, 2005, 76(12): 124901.
[15] Zhao D, Ji C, Li S, et al. Energy, 2014, 65: 517.
[16] Li F, Du M, Xu L. IEEE Sensors Journal, 2019, 19(24): 12271.
[17] Li H, Zhou X, Jeffries J B, et al. AIAA Journal, 2007, 45(2): 390.
[18] Shimura M, Tanahashi M, Miyauchi T, et al. Thermochimica Acta, 2009, 495(1-2): 95.
[19] Liu C, Cao Z, Lin Y, et al. IEEE Transactions on Instrumentation and Measurement, 2018, 67(6): 1338.
[20] Li J, Li R, Liu Y, et al. Sensors, 2022, 22(15): 5729. doi: 10.3390/s22155729.
[21] Bechtel J H. Applied Optics, 1979, 18(13): 2100.
[22] Cattolica R. Applied Optics, 1981, 20(7): 1156.
[23] Anderson W R, Decker L J, Kotlar A J. Combustion and Flame, 1982, 48(2): 163.
[24] Seitzman J M, Hanson R K. Applied Physics B: Photophysics and Laser Chemistry, 1993, 57(6): 385.
[25] Chrystie R S M, Burns I S, Kaminski C F. Combustion Science and Technology, 2013, 185(1): 180.
[26] Ayoola B, Hartung G, Armitage C A, et al. Experiments in Fluids, 2009, 46(1): 27.
[27] Arndt C M, Severin M, Dem C, et al. Experiments in Fluids, 2015, 56(4): 69.
[28] Meier W, Dem C, Arndt C M. Experimental Thermal and Fluid Science, 2016, 73: 71.
[29] Cho J H, Lieuwen T. Combustion and Flame, 2005, 140(1-2): 116.
[30] Feng S, Qiu X, Guo G, et al. Analytical Chemistry, 2021, 93(10): 4552.
[31] Lee J G, Kim K, Santavicca D A. Proceedings of the Combustion Institute, 2000, 28(1): 415.
[32] Blümner R, Paschereit C O, Oberleithner K, et al. Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, 2016, 4A: UNSP V04AT04032.
[33] Stöhr M, Yin Z, Meier W. Proceedings of the Combustion Institute, 2017, 36(3): 3907.
[34] Wang X H, Guo G Q, Qiu X B, et al. Microwave and Optical Technology Letters, 2023, 65(5): 1229.
[35] Liu Y, Shi Z, Chen C, et al. Experimental Thermal and Fluid Science, 2022, 136: 110652.
[36] Zimmer L, Tachibana S. Proceedings of the Combustion Institute, 2007, 31(1): 737.
[37] Tachibana S, Kanai K, Yoshida S, et al. Proceedings of the Combustion Institute, 2015, 35(3): 3299.
[38] Huang R F, Jufar S R, Hsu C M. Experiments in Fluids, 2013, 54(1): 1421.
[39] Loretero M E, Huang R F. Journal of Mechanics, 2010, 26(3): 279.
[40] Hjelmfelt A T, Mockros L F. Applied Scientific Research, 1966, 16(2): 149.
[41] Liu T, Li J, Zhu S, et al. Applied Thermal Engineering, 2022, 206: 118084.
[42] Gao Q, Wang H, Shen G. Chinese Science Bulletin, 2013, 58(36): 4541.
[43] Liu T S, Merat A, Makhmalbaf M H M, et al. Experiments in Fluids, 2015, 56(8): 166.
[44] Kitzhofer J, Brücker C. Experiments in Fluids, 2010, 49(6): 1307.
[45] Meng H, Pan G, Pu Y, et al. Measurement Science and Technology, 2004, 15(4): 673.
[46] Shi S, Ding J, New T H, et al. Experiments in Fluids, 2017, 58(7): 78.
[47] Gao Q, Wang H, Wang J. Science China-Technological Sciences, 2012, 55(9): 2501.
[48] Nie M, Pan C, Wang J, et al. Experiments in Fluids, 2021, 62(4): 68.
[49] Nie M, Pan C, Xu Y, et al. Experiments in Fluids, 2022, 63(9): 148.
[50] O'Connor J, Lieuwen T. Combustion Science and Technology, 2011, 183(5): 427.
[51] Lawn C J, Williams T C, Schefer R W. Proceedings of the Combustion Institute, 2005, 30(2): 1749.
[52] Weilenmann M, Xiong Y, Bothien M, et al. Journal of Engineering for Gas Turbines and Power, 2019, 141(1): 011030.
[53] Kather V, Lückoff F O, Paschereit C, et al. International Journal of Spray and Combustion Dynamics, 2021, 13(1-2): 72.
[54] Wang G, Liu X, Wang S, et al. Combustion and Flame, 2019, 204: 85.
[55] Sadanandan R, Stöhr M, Meier W. Applied Physics B, 2008, 90(3-4): 609.
|
[1] |
JI Yi-min1, 2, TAN Tu2*, GAO Xiao-ming1, 2*, LIU Kun1, 2, WANG Gui-shi2. Research on the Method of Real-Time Correction of Optical Path Length in Multi-Pass Cell for Methane Concentration Measurement[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3029-3036. |
[2] |
GAO Hui, YAO Shu-zhi, ZHANG Meng, JIANG Meng, ZHANG Zi-hao, WANG Xue-feng, YANG Yong*. High Precision Tunable Laser Absorption Spectroscopy Temperature
Detection Method Based on Transmission Curve Fitting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3052-3059. |
[3] |
TAO Meng-meng, WU Hao-long, WANG Ya-min, WANG Sheng, WANG Ke, CAO Hui-lin, YE Jing-feng*. Selection of Scanning Bands for Hyperspectral Absorption Applications[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3043-3051. |
[4] |
JIA Tong-hua1, CHENG Guang-xu1*, YANG Jia-cong1, CHEN Sheng2, WANG Hai-rong3, HU Hai-jun1. Research of Chlorine Concentration Inversion Method Based on 1D-CNN Using Ultraviolet Spectral[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3109-3119. |
[5] |
GE Jing1, 2, LI Zhi-biao1, 2, XUE Bing-qian1, 2, BAI Xi-lin1, 2*. Impact of Fluorine Substitution on the Ultrafast Dynamic Processes of
Coumarin Molecules[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3128-3135. |
[6] |
LU Ming-mei1, ZHOU Zheng-yu1, 2, 3*, QI Li-jian1, 2, 3, LIU Zi-qi1, CHEN Yi-fang1, ZHENG Jun-hao1. Study on Spectral Characteristics and Differences of Natural and Pink Dushan Jade[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3157-3164. |
[7] |
TANG Wei-xin, DING Tao, LI Dong-xian, ZHANG Chang-hua*, LI Ping. Study of High-Temperature Air Radiation Spectrum Under High-Speed Shock Wave[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2739-2744. |
[8] |
HUANG Wen-biao1, 2, XIA Hua2*, WANG Qian-jin1, 2, SUN Peng-shuai2, PANG Tao2, WU Bian2, ZHANG Zhi-rong1, 2, 3, 4*. Research on Measurement Method of δ 13C and δ 18O Isotopes Abundance in Exhaled Gas Based on the BP Neural Network Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2761-2767. |
[9] |
FANG Xiao-meng, WANG Hua-lai, XU Hui, HUANG Meng-qiang, LIU Xiang*. Identification and Detection of Multi-Component Trace Gases Based on Near-Infrared TDLAS Technology Based on SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2909-2915. |
[10] |
QIN Jing, WANG Ke-dong, HU Xue-fang, CHEN Xiao-yuan, LIU Chao. Effect of Pericyclic Substitutes on the Spectral Properties of
Phthalocyanine in Different Substrates[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2953-2958. |
[11] |
HUANG Wen-jian, ZHANG Ming-ke, GAO Guang-zhen*, WANG Xuan, YANG Yu-bing, CAI Ting-dong*. A Static Sample Cell System for Gas Absorbance Spectrum Measurement Under High Temperature[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(08): 2152-2157. |
[12] |
ZHOU Chuang, ZHANG Qi-jin, LI Su-wen*, LUO Jing, MOU Fu-sheng*. Investigation of a Ground-Based MAX-DOAS System for Retrieving
Vertical Column Density of Atmospheric Water Vapor[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(08): 2395-2400. |
[13] |
HUANG Wei, SUN Hao, LIU Zhi-yuan, WANG Kun, SU Ming-xu, YANG Hui-nan*. Novel System Development for Film Thickness Measurement of Oil
on Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(07): 2018-2023. |
[14] |
QIAN Yuan-yuan1, 2, LUO Yu-han1, ZHOU Hai-jin1, DOU Ke1, CHANG Zhen1, YANG Tai-ping1, XI Liang1, TANG Fu-ying1, 2, XU Zi-qiang1, 2, SI Fu-qi1*. Research on Retrieval of Tropospheric Formaldehyde Profiles in Heshan Area From MAX-DOAS Measurements[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1781-1788. |
[15] |
HU Chun-qiao1, 2, LUO Yu-han1*, SONG Run-ze1, 2, CHANG Zhen1, XI Liang1, ZHOU Hai-jin1, SI Fu-qi1. Study on Ground-Based Fast IDOAS for Monitoring the Distribution of Pollutants Discharged From Ship[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1537-1545. |
|
|
|
|