|
|
|
|
|
|
Spectral Characteristics Analysis of Different Vegetation Subformations on the Qinghai-Tibet Plateau |
NIU Jie-qiong1, REN Hong-rui1, ZHOU Guang-sheng2* |
1. Department of Geomatics, Taiyuan University of Technology, Taiyuan 030024, China
2. Chinese Academy of Meteorological Sciences, Beijing 100081, China
|
|
|
Abstract The spectral curve is an important representation of vegetation physiological traits. The study of vegetation spectra is significant for monitoring vegetation growth and health status. Current research on vegetation spectra mainly analyzes different vegetation within the same vegetation type, and there are few reports on the systematic integration of spectral characteristics of different vegetation subformations. The ecological pattern of the Tibetan Plateau has changed significantly in recent years. To conduct research on vegetation spectral characteristics on a large scale in the Qinghai-Tibet Plateau region and to explore the spectral separability among different vegetation subformations based on high-resolution Sentinel-2A/B remote sensing images, the spectral curves of 19 vegetation subformations were analyzed by using the first derivative of the spectrum and vegetation indices. The results showed that: (1) The spectral curves of vegetation sub-formations exhibit significant differences in the near-infrared band, and their reflectance value can be used to distinguish different vegetation sub-formations; (2) First-order derivative processing can elucidate the three-edge features characteristics of vegetation, the first-order derivative spectra of vegetation are of certain regularity, with significant differences in the red edge; (3) Vegetation indices of different vegetation subformations are consistent with changes of the red edge characteristics parameter, and the vegetation indices are discriminative, although their values are relatively small;(4) By combining near-infrared peaks, three-edge characteristics parameters, and vegetation indices, different vegetation subformations can be distinguished. This study analyzed the spectral curve characteristics of different vegetation at the vegetation subformations scale. The experimental results can provide data support for improving the vegetation subformations spectral database and have practical significance for the fine identification of vegetation subtypes on the Qinghai-Tibet Plateau.
|
Received: 2024-01-15
Accepted: 2024-05-06
|
|
Corresponding Authors:
ZHOU Guang-sheng
E-mail: zhougs@cma.gov.cn
|
|
[1] TANG Jian, CAO Hui-qun, CHEN Jin(唐 见, 曹慧群, 陈 进). Acta Geographica Sinica(地理学报), 2019, 74(1): 76.
[2] Foley J A, Levis S, Costa M H et al. Ecological Applications, 2000, 10(6): 1620.
[3] GUO Ke, FANG Jing-yun, WANG Guo-hong, et a1(郭 柯, 方精云, 王国宏, 等). Chinese Journal of Plant Ecology(植物生态学报), 2020, 44(2): 111.
[4] ZHANG Yi-wei, GUO Yan-pei, TANG Rong, et al(张艺伟, 郭焱培, 唐 荣, 等). National of Remote Sensing Bulletin(遥感学报), 2023, 27(11): 2467.
[5] Kishore B S P C, Kumar A, Saikia P, et al. Journal of Asia-Pacific Biodiversity, 2020, 13(4): 637.
[6] ZI Li, XIE Fu-ming, SHU Qing-tai, et al(字 李, 谢福明, 舒清态, 等). Journal of Fujian Agriculture and Forestry University(Natural Science Edition)[福建农林大学学报(自然科学版)], 2019, 48(1): 55.
[7] Judit Rubio-Delgado, Carlos J Pérez, Miguel A Vega-Rodríguez. Precision Agriculture,2021, 22: 1.
[8] Arevalo-Ramirez T A, Castillo A H F, Cabello P S R, et al. Biosystem Engineering,2021, 202: 79.
[9] SUN Yuan, ZHANG Jun-hua, JIA Ping-ping, et al(孙 媛, 张俊华, 贾萍萍, 等). Journal of Northwest A&F University (Natural Science Edition)[西北农林科技大学学报(自然科学版)], 2020, 48(11): 143.
[10] Ren Hongrui, Zhou Guangsheng, Zhang Xinshi. Biosystems Engineering, 2011, 109(4): 385.
[11] Beamish A L, Coops N, Chabrillat S, et al. Remote Sensing, 2017, 9(11): 1200.
[12] Chamizo Sonia, Stevens Antoine, Miralles Isabel, et al. European Journal of Soil Science, 2012, 63(1): 42.
[13] Nill Leon, Grunberg Inge, Ullmann Tobias, et al. Remote Sensing of Environment, 2022, 281: 113228.
[14] HAN Yue, KE Ying-hai, WANG Zhan-peng, et al(韩 月, 柯樱海, 王展鹏, 等). National Remote Sensing Bulletin(遥感学报), 2023, 27(6): 1387.
[15] Raymond Kokaly, Roger Clark, Gregg Alan Swayze, et al. USGS Spectral Library Version 7 data: US Geological Survey Data Release, 2017.
[16] ZHONG Shou-yi, XIAO Qing, WEN Jian-guang, et al(钟守熠, 肖 青, 闻建光, 等). Journal of Remote Sensing(遥感学报), 2020, 24(6): 701.
[17] ZHOU Guang-sheng, REN Hong-rui, LIU Tong, et al(周广胜, 任鸿瑞, 刘 通, 等). Scientia Sinica (Terrae)(中国科学:地球科学), 2023, 53(2): 227.
[18] CHEN Fa-hu, WANG Ya-feng, ZHEN Xiao-lin, et al(陈发虎,汪亚峰,甄晓林, 等). China Tibetology(中国藏学), 2021, (4): 21.
[19] Wang Qian, Zhang Qipeng, Zhou Wei. Physics Procedia, 2012, 33: 1292.
[20] Zhu Jiyou, He Weijun, Yao Jiangming, et al. Applied Sciences-Basel, 2020, 10(10): 3636.
[21] QIAO Yu, ZHAO Chuan-yan, RONG Zhan-lei, et al(乔 雨,赵传燕,戎占磊, 等). Chinese Journal of Ecology(生态学杂志), 2017, 36(1): 11.
[22] ZHOU Wei, LI Hao-ran, SHI Pei-qi, et al(周 伟,李浩然,石佩琪,等). Journal of Geo-information Science(地球信息科学学报), 2020, 22(8): 1735.
[23] ZHANG Yi-li, LI Bing-yuan, LIU Lin-shan, et al(张镱锂, 李炳元, 刘林山, 等). Geographical Research(地理研究), 2021, 40(6): 1543.
[24] ZHENG Yuan-chang(郑远长). Geographical Research(地理研究), 1995, 14(4): 104.
[25] JIN Yi-li, WANG Hao-yan, WEI Lin-feng, et al(金伊丽, 王皓言, 魏临风, 等). Chinese Journal of Plant Ecology(植物生态学报), 2022, 46(7): 846.
[26] Jia Jin, Quan Wang. Ecological Informatics, 2016, 35: 1.
[27] LI Zhe, GUO Xu-dong, GU Chun, et al(李 喆, 郭旭东, 古 春, 等). Journal of Remote Sensing(遥感学报), 2016, 20(2): 290.
[28] LI Xue-ping, ZHANG Fei, WANG Xiao-ping, et al(李雪萍,张 飞,王小平). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2019, 39(2): 535.
[29] GUO Fen-fen, FAN Jian-rong, TANG Xu-guang, et al(郭芬芬, 范建容, 汤旭光, 等). Remote Sensing Information(遥感信息), 2013, 28(1): 77, 88.
[30] Wang Li, Yu Haiying, Zhang Qiang, et al. Journal of Geographical Sciences, 2018, 28(12): 1953.
|
[1] |
CHEN Jun-jie1, YU Quan-zhou1, 2*, TANG Qing-xin1, LIANG Tian-quan1, JIANG Jie1, ZHANG Hong-li1. Hyperspectral Differences Between New and Old Leaves of Dominant Tree Species in Changbai Mountain[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(08): 2372-2380. |
[2] |
CHENG Ao1, CHEN Dan1, REN Lan-tian2, JI Wen-chao1, 3, FAN Xing-jun1, 3*, LIU Xiao-long1, YU Xu-fang1. The Distributions and Spectral Characteristics of Molecular Weight-Fractionated Dissolved Organic Matter Derived From Mushroom Residue and Rice Straw Compost[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1330-1337. |
[3] |
HU Cheng-hao1, WU Wen-yuan1, 2*, MIAO Ying1, XU Lin-xia1, FU Xian-hao1, LANG Xia-yi1, HE Bo-wen1, QIAN Jun-feng3, 4. Study on Hyperspectral Rock Classification Based on Initial Rock
Classification System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(03): 784-792. |
[4] |
LIANG Ye-heng1, DENG Ru-ru1, 2*, LIANG Yu-jie1, LIU Yong-ming3, WU Yi4, YUAN Yu-heng5, AI Xian-jun6. Spectral Characteristics of Sediment Reflectance Under the Background of Heavy Metal Polluted Water and Analysis of Its Contribution to
Water-Leaving Reflectance[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 111-117. |
[5] |
CUI Xiang-yu1, 3, CHENG Lu1, 2, 3*, YANG Yue-ru1, WU Yan-feng1, XIA Xin1, 3, LI Yong-gui2. Color Mechanism Analysis During Blended Spinning of Viscose Fibers Based on Spectral Characteristics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3916-3923. |
[6] |
CUI Song1, 2, BU Xin-yu1, 2, ZHANG Fu-xiang1, 2. Spectroscopic Characterization of Dissolved Organic Matter in Fresh Snow From Harbin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3937-3945. |
[7] |
FENG Hai-kuan1, 2, FAN Yi-guang1, TAO Hui-lin1, YANG Fu-qin3, YANG Gui-jun1, ZHAO Chun-jiang1, 2*. Monitoring of Nitrogen Content in Winter Wheat Based on UAV
Hyperspectral Imagery[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3239-3246. |
[8] |
LI Bin, HAN Zhao-yang, WANG Qiu, SUN Zhao-xiang, LIU Yan-de*. Research on Bruise Level Detection of Loquat Based on Hyperspectral
Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1792-1799. |
[9] |
NIU An-qiu, WU Jing-gui*, ZHAO Xin-yu. Infrared Spectrum Analysis of Degradation Characteristics of PPC Plastic Film Under Different Covering Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 533-540. |
[10] |
ZHANG Jian1, LIU Ya-jian2, CAO Ji-hu3. Raman Spectral Characteristics of Pyrite in Luyuangou Gold Deposit, Western Henan Province and Its Indicative Significance for Multiphase Metallogenesis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3770-3774. |
[11] |
ZHANG Heng-ming1, SHI Yu1*, LI Chun-kai1, 2, 3, GU Yu-fen1, ZHU Ming1. The Effect of Electrode Polarity on Arc Plasma Spectral Characteristics of Self-Shielded Flux Cored Arc Welding[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3917-3926. |
[12] |
DAI Qian-cheng1, XIE Yong1*, TAO Zui2, SHAO Wen1, PENG Fei-yu1, SU Yi1, YANG Bang-hui2. Research on Fluorescence Retrieval Algorithm of Chlorophyll a Concentration in Nanyi Lake[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3941-3947. |
[13] |
WANG Dong-sheng1, WANG Hai-long1, 2, ZHANG Fang1, 3*, HAN Lin-fang1, 3, LI Yun1. Near-Infrared Spectral Characteristics of Sandstone and Inversion of Water Content[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3368-3372. |
[14] |
HUANG Yue-hao1, 2, JIN Yong-ze2. Analysis and Research on Spectral Characteristics of the Traditional Architectural Color Painting Pigments in Regong, Qinghai Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3519-3525. |
[15] |
YAN Kang-ting1, 2, HAN Yi-fang1, 2, WANG Lin-lin1, 2, DING Fan3, LAN Yu-bin1, 2*, ZHANG Ya-li2, 3*. Research on the Fluorescence Spectra Characteristics of Abamectin Technical and Preparation Solution[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3476-3481. |
|
|
|
|