|
|
|
|
|
|
Research Progress of Surface-Enhance Raman Scatting Spectrum for
miRNAs Detection |
LIU Hui-qiao1, 2, FU Jin-jin1, WANG Si-tian1, ZHANG Jia-kun1, HE Ya-nan1, CAO Kang-zhe1 |
1. College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
2. Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang 464000, China
|
|
|
Abstract Surface-enhance Raman scatting (SERS) has been widely used in biomedical detection due to its high sensitivity, non-invasive, multi-channel detection and other characteristics. The abnormal expression of microribonucleic acid (miRNAs) has been found to be associated with a variety of diseases, and miRNAs have become a novel biomarker. The development of simple, sensitive and reliable miRNAs detection methods is of great significance for studying biological function, medical diagnosis, disease treatment and targeted drug research of miRNAs. Nano-SERS probes combined with nucleic acid signal amplification strategy showed high sensitivity for miRNAs detection. However, the components in the actual samples are complex, resulting in background signal interference detection results, and the tedious separation and purification process increases the detection time. Researchers have recently combined other techniques to optimize detection, improve sample throughput, simplify operations, reduce analysis time, and improve resolution. This paper mainly introduces the latest progress in miRNAs detection method based on SERS technology, discusses the advantages and necessity of technology fusion, and summarises the existing problems of miRNAs detection based on SERS technology for clinical detection, aiming to provide a reference for the design of a new fast, sensitive and reliable miRNAs detection platform.
|
Received: 2022-11-16
Accepted: 2023-10-25
|
|
|
[1] Kneipp K, Kneipp H, Itzkan I, et al. Chemical Reviews, 1999, 99(10): 2957.
[2] Kneipp K, Wang Y, Kneipp H, et al. Chemical Physics Letters, 1997, 78: 1667.
[3] Nie S, Emory S R. Science, 1997, 275: 1102.
[4] Zhang Y, Gu Y, He J, et al. Nature Communications, 2019, 10: 3905.
[5] Wang Y, Yan B, Chen L. Chemical Reviews,2013, 113(3): 1391.
[6] Xu C, Xu H, Xu Yi, et al. ACS Nano,2020, 14(1): 28.
[7] Stacey L, Lauren E J, Karen F, et al. Nature Reviews Chemistry, 2017, 1: 0060.
[8] Ye J, Xu M, Tian X, et al. Journal of Pharmaceutical Analysis, 2019, 9: 217.
[9] Zhang J, Luo Q, Li X, et al. Biomarker Research, 2023, 11: 86.
[10] Usman F, Dennis J O, Aljameel A I, et al. Chemosensors, 2021, 9: 326.
[11] Lucarini V, Nardozi D, Angiolini V, et al. Biomedicines, 2023, 11(6): 1761.
[12] Renner A M, Derichsweiler C, Ilyas S, et al. Biomaterial Science, 2022, 10: 1113.
[13] Boyero L, Noguera Uclés J F, Castillo Peña A, et al. Cancers, 2023, 15(5): 1466.
[14] Forte G, Ventimiglia G, Pesaturo M, et al. Biotechnology Journal, 2022, 17(6): 2100587.
[15] Ideozu J E, Zhang X, Rangaraj V, et al. Scientific Reports, 2019, 9: 15483.
[16] Kong X, Wang J, Lv S, et al. Analytica Chimica Acta, 2023, 1247: 340894.
[17] Wen Y, Liu W, Wang J, et al. Analytical Chemistry, 2023, 95(32): 12152.
[18] Jiang P, Bai Y, Yan L, et al. Analytical Chemistry, 2023, 95(19): 7676.
[19] Napoletano S, Battista E, Martone N, et al. Talanta, 2023, 259: 124468.
[20] Zhu Y, Wang P, Ma Q, et al. Chemical Engineering Journal, 2023, 469: 144025.
[21] Jiao S, Liu L, Xing Y, et al. Sensors and Actuators B: Chemical, 2023, 383: 133578.
[22] Jiang Ling, Du J, Xu H, et al. Analytical Chemistry, 2023, 95(2): 1193.
[23] Hu C, Zhang L, Yang Z, et al. Analytica Chimica Acta, 2021, 1174: 338715.
[24] Ban E, Song E. Genes, 2022, 13(2): 328.
[25] Lu X, Hu C, Jia D, et al. Nano Letters, 2021, 21(15): 6718.
[26] Sun J, Sun X. Trends in Analytical Chemistry, 2020, 127: 115900.
[27] Fleischmann M, Hendra P J, McQuillan A J. Chemical Physics Letters, 1974, 26(2): 163.
[28] Valley N, Greeneltch N, Van Duyne R P, et al. The Journal of Physical Chemistry Letters, 2013, 4(16): 2599.
[29] Ding S, Yi J, Li J, et al. Nature Reviews Materials, 2016, 1: 16021.
[30] Zhou W, Li Q, Liu H, et al. ACS Nano, 2017, 11(4): 3532.
[31] Lombardi J R, Birke R L. The Journal of Chemical Physics, 1998, 108: 5013.
[32] Etchegoin P G. Physical Chemistry Chemical Physics, 2009, 11(34): 7348.
[33] Grasseschi D, Toma H E. Coordination Chemistry Reviews, 2017, 333: 108.
[34] Moldovan R, Vereshchagina E, Milenko K, et al. Analytica Chimica Acta, 2022, 1209: 339250.
[35] SONG Chun-yuan, CHEN Wen-qiang, YANG Yan-jun, et al(宋春元, 陈文蔷, 杨琰君,等). Progress in Chemistry(化学进展), 2015, 27(1): 91.
[36] Liu H, Gao X, Xu C, et al. Theranostics, 2022, 12(4): 1870.
[37] Li J, Liu H, Rong P, et al. Nanoscale, 2018, 10(17): 8292.
[38] Liao X, Zhang C, Qiu S, et al. Talanta, 2022, 244: 123402.
[39] Chen R, Shi H, Meng X, et al. Analytical Chemistry, 2019, 91(5): 3597.
[40] Liang Z, Zhou J, Petti L, et al. Analyst, 2019, 144(5): 1741.
[41] Zhou H, Zhang J, Li B, et al. Analytical Chemistry, 2021, 93(15): 6120.
[42] Liu H, Li Q, Li M, et al. Analytical Chemistry, 2017, 89(9): 4776.
[43] Si Y, Xu L, Deng T, et al. ACS Sensors, 2020, 5(12): 4009.
[44] Sun Y, Fang L, Yi Y, et al. Journal of Nanobiotechnology, 2022, 20(1): 285.
[45] Wen S, Su Y, Dai C, et al. Analytical Chemistry, 2019, 91(19): 12298.
[46] Chen J, Wu Y, Fu C, et al. Biosensors and Bioelectronics, 2019, 143: 111619.
[47] Liu L, Shangguan C, Guo J, et al. Advanced Optical Materials, 2020, 8(23): 2001214.
[48] Zhang H, Fu C, Yi Y, et al. Analytical Methods, 2018, 10(6): 624.
[49] Chen T, Wu Q, Cao S, et al. Chemical Engineering Journal, 2022, 430: 132887.
[50] Zhang H, Fu C, Wu S, et al. Analytical Methods, 2019, 11(6): 783.
[51] Ma W, Liu L, Zhang X, et al. Analytica Chimica Acta, 2022, 1221: 340139.
[52] Zhai J, Li X, Zhang J, et al. Sensors and Actuators B: Chemical, 2022, 368: 132245.
[53] Song C, Zhang J, Jiang X, et al. Biosensors and Bioelectronics, 2021, 190: 113376.
[54] Li G, Niu P, Ge S, et al. Frontiers in Molecular Biosciences, 2022, 8: 813007.
[55] Mao Y, Sun Y, Xue J, et al. Analytica Chimica Acta, 2021, 1178: 338800.
[56] Lin X, Lin D, Chen Y, et al. Advanced Functional Materials, 2021, 31(51): 2103382.
[57] Zhao Y, Fang X, Bai M, et al. Chinese Chemical Letters, 2022, 33(4): 2101.
[58] Jiang S, Li Q, Wang C, et al. ACS Sensors, 2021, 6(3): 852.
[59] Sun J, Song Y, Wang M, et al. ACS Applied Materials & Interfaces, 2022, 14(32): 37088.
[60] Ma L, Ye S, Wang X, et al. ACS Sensors, 2021, 6(3): 1392.
[61] Cao X, Wang Z, Bi L, et al. Nanoscale, 2020, 12:1513.
[62] Lv J, Chang S, Chen H, et al. Biosensors and Bioelectronics, 2023, 234: 115325.
[63] Zhang J, Zhang H, Ye S, et al. Analytical Chemistry, 2021, 93(3): 1466.
[64] Wang J, Zhang C, Liu Z, et al. Analytical Chemistry, 2021, 93(41): 13755.
[65] Liu X, Wang X, Ye S, et al. ACS Applied Materials & Interfaces, 2021, 13(24): 27825.
|
[1] |
HUANG Ji-chong1, SONG Shao-zhong2*, LIU Chun-yu1, XU Li-Jun1, CHEN An-liang1, LU Ming1, GUO Wen-jing1, MIAO Zhuang1, LI Chang-ming1, TAN Yong1, LIU Zhe3. Research on Identification of Corn Storage Years Based on Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(08): 2166-2173. |
[2] |
ZHANG Yin1, FENG Cheng-cheng2, 3, XIA Qi2, 3, HU Ting1, YUAN Li-bo1*. Deep Leaning Classification of Novel Coronavirus Raman Spectra
Enhanced by CGAN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(08): 2273-2278. |
[3] |
YAN Xia1, HU Cong-cong1, YANG Zhi-yuan2, ZHAO Hang2*, SHI Xiao-feng2, MA Jun2*. SERS Detection of Carbendazim Based on Convex Polyhedrons Shaped Au@4-ATP@Au Nanoparticle[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(07): 1843-1851. |
[4] |
MA Huan-zhen1, 4, YAN Xin-ru1, 4, XIN Ying-jian3, 4, FANG Pei-pei1, 3, 4, WANG Hong-peng3, WANG Yi-an1, 4, DUAN Ming-kang3, 4, JIA Jian-jun3, HE Ji-ye2*, WAN Xiong1, 3*. Blood Identification Based on AFSA-SVM Dynamic Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(07): 1877-1882. |
[5] |
WANG Bo1, WANG Yu-chun1, ZHANG Chao2, GAO Hong-sheng2, HE Hui-ying2*. Research Progress of Surface Enhanced Raman Scattering in Gene
Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1512-1517. |
[6] |
WANG Zi-xuan, YANG Miao, LIU Di-wen, MENG Bin, ZU En-dong*. The Study of Colored Freshwater Nucleated Pearl Via Raman Spectra and Chromaticity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1684-1688. |
[7] |
LI Chang-ming1, GU Yi-fan2, ZHANG Hong-chen1, SONG Shao-zhong3*, GAO Xun2*. The Surface Enhanced Raman Spectroscopy Characteristics of Cyromazine Molecule Based on Density Function Theory[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1566-1570. |
[8] |
LIU Jing, YAO Yu-zeng*, FU Jian-fei, LI Zi-ning, HOU Ting-ting, ZHANG Yong-li. Micro-Raman Spectral Characteristics and Implication of Magnetite in Gongchangling Iron Mine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1697-1702. |
[9] |
SI Min-zhen1, 2, WANG Min1, 2, LI Lun1, 2, YANG Yong-an1, 2, ZHONG Jia-ju3, YU Cheng-min3*. The Main Ingredients Analysis and Rapid Identification of Boletuses Based on Surface-Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1648-1654. |
[10] |
LIU Zhen-fang, HUANG Min*, ZHU Qi-bing, ZHAO Xin, YAN Sheng-qi. Spatially Offset Raman Spectroscopy Analysis Technology and Application in Food Subsurface Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1201-1208. |
[11] |
TIAN Tian1, 2, CHANG Fa-xian1, 2, ZHANG De-qing1, 2, SI Min-zhen1, 2, YANG Yong-an1, 2*. Preparation of Silver Film Based on Odontotermes Formosanus Wings and SERS Detection of Harmful Substances[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1233-1238. |
[12] |
HUANG Li-jun1, ZHUANG Shun-qian2, FENG Yong-wei1, YANG Fang-wei2, SUN Zhen1, XIE Yun-fei2*, XUE Qing-hai1. Simultaneous Determination of Five Banned Sartan Compounds in Antihypertensive Health Food Using Thin-Layer Chromatography Combined With Surface-Enhanced Raman Spectroscopy (TLC-SERS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1354-1363. |
[13] |
MA Jun-jie, LI Yan, WU Fu-rong, HE Kang, WANG Feng-ping*. Spectroscopic Study on the Pigments of the Architectural Colored
Paintings of the Altar of Agriculture in Beijing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 983-990. |
[14] |
TIAN Chao-fan, LI Jian-jun*, WENG Guo-jun, ZHU Jian, ZHAO Jun-wu*. Improved Num-Local Piecewise Polynomial Fitting Algorithm for
Accurate Correction of Raman Spectroscopy Baselines[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 1073-1080. |
[15] |
LIU Zong-yi1, 2, ZHANG Cai-hong1, 2, JIANG Jian-kang1, 2, SHEN Bin-guo3, DING Yan-fei1, 2, ZHANG Lei-lei1, 2*, ZHU Cheng1, 2*. Rapid Determination of Total Flavonoids in Dendrobium Officinale Based on Raman Spectroscopy and CNN-LSTM Deep Learning Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 1018-1024. |
|
|
|
|