|
|
|
|
|
|
Progress of Femtosecond Laser Direct Writing Fiber Grating and Spectral Optimization Method |
ZHU Yu-xue1, CHEN Dong-ying2, ZHAO Qiang2, 3* , QU Yi1* |
1. Hainan Key Laboratory of Laser Technology and Optoelectronic Functional Materials, School of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158,China
2. Research Institute of Marine Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, China
3. Qingdao Marine Science and Technology Center, Qingdao 266237, China
|
|
|
Abstract The conventional techniques for preparing fiber gratings involve ultraviolet exposure and CO2 laser methods. The ultraviolet exposure is advantageous due to its simplicity and ease of alignment. However, it typically requires hydrogen-carrying sensitization treatment on the fiber and the refractive index modulation can be easily erased at high temperatures, limiting its applicability in extreme environments. On the other hand, the CO2 laser method is commonly used for producing long-period fiber gratings but its measurement sensitivity is susceptible to high temperatures. To address the limitations of these traditional methods, femtosecond laser scribing technology has emerged. This technology encompasses femtosecond laser direct writing, femtosecond laser holographic interference and femtosecond laser phase mask methods. Among these, femtosecond laser direct writing offers high efficiency, low pulse energy requirements, and the ability to modulate the center wavelength, grating spacingand grating length based on sensing requirements. Moreover, the experimental setup for femtosecond laser direct writing is simple and does not require a phase mask to control the grating period. Femtosecond laser direct writing fiber gratings exhibit flexible refractive index modulation, excellent high-temperature performance, and high mechanical strength. As a result, they have found widespread applications in sensors, lasers, and other optical devices. This paper provides a brief introduction to the working principle and typical writing methods of femtosecond laser direct writing fiber gratings. It also summarizes the research progress of three direct writing methods of femtosecond laser, both domestically and internationally. The advantages and disadvantages of these three methods are compared and analyzed in terms of preparation efficiency and spectral quality. Additionally, the paper delves into the detailed analysis and discussion of spectral optimization methods, including laser pulse energy, grating length, fiber type, beam shaping, and grating apodization. The ultimate goal is to achieve a high reflection peak, narrow 3dB bandwidth, and low insertion loss.
|
Received: 2023-07-29
Accepted: 2023-11-14
|
|
Corresponding Authors:
ZHAO Qiang, QU Yi
E-mail: zhaoqiang@qlu.edu.cn; quyihainan@126.com
|
|
[1] Mumtaz F, Zhang B, O'Malley R J, et al. Optics Express, 2023, 31(18): 29639.
[2] Oi K, Barnier F, Obara M. LEOS_2001. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2001, 2: 776.
[3] Li H, Wang M, Wu B, et al. Optics Express,2023, 31(8): 13393.
[4] MENG Ai-hua, CUI Ding-yuan, ZHANG Xuan-yu, et al(孟爱华, 崔丁元, 张轩宇, 等). Laser & Optoelectronics Progress(激光与光电子学进展), 2017, 54(6): 188.
[5] XIONG Xian-wei, CHEN Sheng-ping, ZHU Hong-tian, et al(熊贤伟, 陈胜平, 朱宏田, 等). Chinese Journal of Lasers(中国激光), 2022, 49(1): 173.
[6] Zhu C, Alla D, Huang J, et al. OSA Continuum, 2021, 4(2): 355.
[7] Liu Y, Rahman B M A, Grattan K T V. Applied Optics, 1994, 33(24): 5611.
[8] Jovanovic N, Thomas J, Williams R J, et al. Optics Express, 2009, 17(8): 6082.
[9] Bharathan G, Woodward R I, Ams M, et al. Optics Express, 2017, 25(24): 30013.
[10] Kondo Y, Nouchi K, Mitsuyu T, et al. Optics Letters, 1999, 24(10): 646.
[11] Martinez A, Dubov A, Khrushchev I, et al. Electronics Letters, 2004, 40(19): 1170.
[12] Huang B, Shu X. Optics Express, 2016, 24(16): 17670.
[13] Theodosiou A, Aubrecht J, Peterka P, et al. IEEE Photonics Technology Letters, 2019, 31(5): 409.
[14] Li H Y, Zhao X F, Rao B Y, et al. Sensors, 2021, 21(18): 6237.
[15] Mihailov S J, Hnatovsky C, Abdukerim N, et al. Sensors, 2021, 21(4): 1447.
[16] Ulyanov I, Przhiialkovskii D V, Butov O V. Results in Physics, 2022, 32: 105101.
[17] Zhang J, Zhou Y, Sun P, et al. Optics Communications, 2023, 528: 129049.
[18] Wolf A, Dostovalov A, Bronnikov K, et al. Opto-Electronic Advances, 2022, 5(4): 210055.
[19] Zhang C Z, Yang Y H, Wang C, et al. Optics Express, 2016, 24(4): 3981.
[20] Wang Y P, Li Z L, Liu S, et al. Journal of Lightwave Technology, 2019, 37(10): 2185.
[21] Liu J, Zhu L, He W, et al. Optical Fiber Technology, 2020, 56: 102186.
[22] Su D, Qiao X. Optics Express, 2022, 30(6): 9156.
[23] Chen R X, He J, Xu X Z, et al. Micromachines, 2022, 13(11): 1808.
[24] HU Xing-liu, LIANG Da-kai, LU Guan, et al(胡兴柳, 梁大开, 陆 观, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2010, 30(3): 851.
[25] KANG Juan, DONG Xin-yong, ZHAO Chun-liu, et al(康 娟, 董新永, 赵春柳, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2011, 31(4): 902.
[26] Zhou K, Dubov M, Mou C, et al. IEEE Photonics Technology Letters, 2010, 22(16): 1190.
[27] Antipov S, Ams M, Williams R J, et al. Optics Express, 2016, 24(1): 30.
[28] Xu X Z, He J, Liao C R, et al. Optics Letters, 2019, 44(17): 4211.
[29] Bharathan G, Fernandez T T, Ams M, et al. Optics Letters, 2019, 44(2): 423.
[30] She L, Xu N, Wang P, et al. IEEE Photonics Journal, 2022, 14(2): 5119105.
[31] Theodosiou A, Lacraz A, Stassis A, et al. Journal of Lightwave Technology, 2017, 35(24): 5404.
[32] Lu P, Mihailov S J, Ding H, et al. Proc of SPIE, 2017, 10323: 103234M.
[33] Goya K, Matsukuma H, Uehara H, et al. Optics Express, 2018, 26(25): 33305.
[34] Roldan-Varona P, Pallares-Aldeiturriaga D, Rodriguez-Cobo L, et al. Journal of Lightwave Technology, 2020, 38(16): 4526.
[35] Willer Y, Zhang Z Y, Angelmahr M, et al. Proc of SPIE, 2023,12417: 1241705.
[36] Koutsides C, Kalli K, Webb D J, et al. Optics Express, 2011, 19(1): 342.
[37] Thomas J, Jovanovic N, Becker R G, et al. Optics Express, 2011, 19(1): 325.
[38] Chah K, Kinet D, Wuilpart M, et al. Optics Letters, 2013, 38(4): 594.
[39] Chah K, Voisin V, Kinet D, et al. Optics Letters, 2014, 39(24): 6887.
[40] Williams R J, Jovanovic N, Marshall G D, et al. Optics Express, 2012, 20(12): 13451.
[41] Xu B J, He J, Du B, et al. Optics Express, 2021, 29(20): 32615.
[42] Erdogan T. IEEE Journal of Lightwave Technology, 1997, 15(8): 1277.
[43] RAO Yun-jiang, WANG Yi-ping, ZHU Tao(饶云江,王义平,朱 涛). Principle and Application of Fiber Grating(光纤光栅原理及应用). Beijing: Science Press(北京: 科学出版社), 2006: 111.
[44] Bharathan G, Fernandez T T, Ams M, et al. Optics Letters, 2020, 45(15): 4316.
[45] He J, Wu J F, Xu X Z, et al. IEEE Journal of Lightwave Technology, 2023, 41(22): 7014.
[46] Chen L, Fu C L, Cai Z H, et al. Optics Letters, 2022, 47(14): 3435.
[47] Lu P, Grobnic Dan, Mihailov Stephen J. Journal of Lightwave Technology, 2007, 25(3): 779.
[48] Xu X, He J, He J, et al. Journal of Lightwave Technology, 2021, 39(15): 5142.
[49] Wu J F, Xu X Z, Liao C R, et al. Optics Express, 2023, 31(3): 3831.
[50] Li X Y, Chen F Y, Bao W J, et al. Optics and Laser Technology, 2023, 161: 109226.
[51] Williams R J, Voigtländer C, Marshall G D, et al. Optics Letters, 2011, 36(15): 2988.
[52] Williams R J, Krämer R G, Nolte S, et al. Optics Express, 2013, 21(22): 26854.
[53] Ioannou A, Kalli K. Optics Letters, 2023, 48(7): 1826.
[54] Guo Q, Zheng Z, Wang B, et al. Photonics, 2021, 8(4): 110.
[55] He J, Chen Z Y, Xu X Z, et al. Optics Letters, 2021, 46(22): 5663.
|
[1] |
ZHEN Jia-hong, WANG Zhi-feng*, LI Chang-jun. Spectral Optimization of White LED to Minimize Blue Light Hazards and Enhance Color Performance of Hybrid LEDs[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(08): 2146-2151. |
[2] |
WANG Chong, DU Huan, WANG Jing, WANG Jing, WANG Jing-hua. Using Fiber Grating Cascade Structure to Realize Fiber Delay Line[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2241-2246. |
[3] |
CHEN Huan-quan1, DONG Zhong-ji2, CHEN Zhen-wei1, ZHOU Jin1, SU Jun-hao1, WANG Hao1, ZHENG Jia-jin1, 3*, YU Ke-han1, 3, WEI Wei1, 3. Study on the High Temperature Annealing Process of Thermal
Regeneration Fiber Bragg Grating[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1934-1938. |
[4] |
LIU Zhi-chao1, 2, ZHANG Li-juan3, YANG Jin-hua1, WANG Gao4. Research on Bragg Spectral Distribution Based on Refractive Index Modulation Matrix[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(12): 3718-3723. |
[5] |
LIU Xiao-ying1,ZENG Jie1*,GUO Xiao-hua2,GONG Xiao-jing3,LI Ning-xi4,LI Tong-wei1,WANG Ji-gang1. The Integrated Monitoring Method of Optical Fiber Gas Pressure and Temperature Based on Reflection Spectrum Characteristic Identification[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2838-2843. |
[6] |
MA Chi1,ZENG Jie1*,ZHANG Jing-chuan2,GONG Xiao-jing3,ZHANG Yi-xin4,FENG Xiang-yu1,ZHOU Lin1. Research on Thermal Load Response Spectrum of FBG Sensors Implanted in Carbon Fiber Honeycomb Sandwich Structure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2927-2932. |
[7] |
MA Bin1, XU Jian2. Study of Fiber-Optic Acoustic Emission Sensor for Partial Discharges Detection in Power Transformer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(07): 2273-2277. |
[8] |
FENG Shu-qing1, XIONG Ke1*, BIAN Kan1, LU Ji-yun2 . FBG Self-Chirped Based on an Sine-Structure [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(01): 283-286. |
[9] |
WANG Zheng-fang1, 2, WANG Jing1, SUI Qing-mei1* . Research on the Phase-Shifted Fiber Bragg Grating Spectra under Dynamic Strain Fields[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(12): 4113-4119. |
[10] |
LIU Zhi-chao1, YANG Jin-hua1, ZHANG Liu2*, WANG Gao3 . Granary Temperature Measurement Network Based on Chirped FBG [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(10): 3377-3380. |
[11] |
ZHANG Jun1, ZENG Jie1*, WANG Bo2, WANG Wen-juan3, LIANG Da-kai1, LIU Xiao-ying1 . The Research on Optic Fiber FBG Corrosion Sensor Based on the Analysis of the Spectral Characteristics [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(03): 853-856. |
[12] |
LAN Jin-long, GU Zheng-tian* . The Study of Characteristics of Cladding-Reduced Coated Long-Period Fiber Grating Based on Mode Transition and Dual Peak Resonance[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(11): 3230-3235. |
[13] |
JIANG Qi1, Lü Dan-dan1*, YU Ming-hao1, KANG Li-min2, OUYANG Jun2* . The Experiment Research on Solution Refractive Index Sensor Based on Tilted Fiber Bragg Grating[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(12): 3425-3431. |
[14] |
SHAO Min1, QIAO Xue-guang2, ZHAO Xue3, FU Hai-wei3, JIA Zhen-an3, FENG De-quan3 . Simultaneous Measurement of Temperature and Strain Based on Long-Period Fiber Grating and Sagnac Interferometer Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(09): 2318-2321. |
[15] |
WANG Zheng-fang, WANG Jing, SUI Qing-mei*, JIANG Shan-chao, JIA Lei, CAO Yu-qiang . Research on the Phase-Shifted Fiber Grating Spectrum Characteristics in the Inhomogeneous Strain Fields [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(07): 2003-2008. |
|
|
|
|