|
|
|
|
|
|
Micro X-Ray Fluorescence Technology Reveals Macrofossil Bones and Surrounding Matrix Element Characteristics——A Case Study of the Middle Triassic Mixosaurus panxianensis |
WANG Yi-nuo1, FU Wan-lu1, 2, ZHOU Min1*, LU Hao3, SUN Zuo-yu1, YAO Ming-tao1, JIANG Da-yong1* |
1. Department of Geology and Geological Museum, Peking University, Beijing 100871, China
2. State Key Laboratory of Palaeobiology and Stratigraphy (Nangjing Institute of Geology and Palaeontology, Chinese Academy of Sciences), Nangjing 210008, China
3. School of History, Beijing Normal University, Beijing 100875, China
|
|
|
Abstract We apply the Micro-XRF, which can be used to in situ non-destructively study the element distribution of the skeleton and surrounding matrix in vertebrate fossils to scan the holotype and paratype of the Middle Triassicmarine reptile Mixosauruspanxianensis (~244 Ma), visualizing the overall element distribution of the specimens. Additionally, the paratype's regions of interest are tested using a handheld X-ray fluorescence spectrometer as an adjunct. The research results show that the bone and matrix elements present a different distribution pattern. The skeleton clearly controls Ca, P, Sr and Y. The matrix where the fossil is preserved is rich in Ca, K, Fe, and Mn. In addition, Zn is variouslydistributed in different fossil bone parts of the paratype specimen, where the Zn content is higher in the trunk region than in the skull. In terms of fossil morphology, the maps clearly resolve the fossil morphology. The right forelimb and gastralium of the paratype specimen, which are invisible in regular light, are particularly well-resolved by the elemental maps. At the same time, the calcareous matrix and bone can be distinguished better. In taphonomy, comparing the elemental features of fossilized marine and terrestrial fossils demonstrates how the burial environment affects the distribution characteristics of certain elements. Th, Ce, Cu and Sr responded to the burial environment, while some elements related to bone, such as Ca, P, and Y, were less affected by the burial environment. The distribution of Zn in different bone regions was altered by bone development, and the paratype specimen's centrums and ribs, where Zn is elevated, are likely to be in the stage of rapid ossification, indicating that the paratype specimen was subadult.
|
Received: 2023-01-02
Accepted: 2023-09-13
|
|
Corresponding Authors:
ZHOU Min, JIANG Da-yong
E-mail: minzhou@pku.edu.cn;djiang@pku.edu.cn
|
|
[1] HAO Wei-cheng, SUN Yuan-lin, JIANG Da-yong, et al(郝维城, 孙元林, 江大勇,等). Acta Scientiarum Naturalium Universitatis Pekinensis[北京大学学报(自然科学版)],2006,(6): 817.
[2] Jiang D Y, Motani R, Huang J D, et al. Scientific Reports, 2016, 6: 26232.
[3] Jiang D Y, Schmitz L, Hao W C, et al. Journal of Vertebrate Paleontology, 2006, 26(1): 60.
[4] Motani R. Journal of Paleontology, 1999, 73(5): 924.
[5] Mancuso A C, Previtera E. Palaeobiodiversity and Palaeoenvironments, 2022, 102(1): 205.
[6] Rossi V, Webb S M, McNamara M E. Scientific Reports, 2020, 10(1): 8970.
[7] Delsett L L, Friis H, Kölbl-Ebert M, et al. PeerJ, 2022, 10: e13173.
[8] Goodwin M B, Grant P G, Bench G, et al. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 253(3-4): 458.
[9] Ullmann P V, Grandstaff D E, Ash R D, et al. Geochimica et Cosmochimica Acta, 2020, 269: 223.
[10] Li J, Pei R, Teng F, et al. bioRxiv, 2020.
[11] Trueman C N G, Behrensmeyer A K, Tuross N, et al. Journal of Archaeological Science, 2004, 31(6): 721.
[12] Williams C T. Alteration of Chemical Composition of Fossil Bones by Soil Processes and Groundwate. Springer, Berlin, Heidelberg, 1988: 27.
[13] Trueman C N, Tuross N. Reviews in Mineralogy and Geochemistry, 2002, 48(1): 489.
[14] Pierre Gueriau, Clément Jauvion, Cristian Mocuta. Palaeontology, 2018, 61(6): 981.
[15] Keenan S W, Engel A S. Geochimica et Cosmochimica Acta, 2017, 196: 209.
[16] Bergmann U, Morton R W, Manning P L, et al. Proceedings of the National Academy of Sciences of USA, 2010, 107(20): 9060.
[17] Trueman C N, Benton M J. Geology, 1997, 25(3): 263.
[18] MOU Bao-lei(牟保磊). Element Geochemistry(元素地球化学). Beijing:Peking University Press(北京:北京大学出版社),1999. 128.
[19] Bowen H J M. Environmental Chemistry of the Elements. Academic Press, 1979.
[20] Rosenthal H L, Eves M M, Cochran O A. Comparative Biochemistry and Physiology, 1970, 32(3): 445.
[21] Honda K, Fujise Y, Itano K, et al. Agricultural and Biological Chemistry, 1984, 48(3): 677.
[22] Shinomiya T, Shinomiya K, Orimoto C, et al. Forensic Science International, 1998, 98(1-2): 109.
[23] Carvalho M L, Marques A F, Lima M T, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2004, 59(8): 1251.
[24] Kazemi M, Williams J L. Cartilage, 2021, 13(2_suppl): 16S.
[25] Roschger A, Hofstaetter J G, Pemmer B, et al. Osteoarthritis and Cartilage, 2013, 21(11): 1707.
[26] TANG Bin, HAO Wei-cheng, SUN Zuo-yu(唐 宾, 郝维城, 孙作玉). Journal of Palaeogeography(古地理学报), 2007,(6): 651.
[27] Manning P L, Edwards N P, Bergmann U, et al. Nature Communications, 2019, 10: 2250.
|
[1] |
HAN Xiang-na1, DAI Li-yang1, JIANG Shun-xing2, WANG Xiao-lin2, 3*. Study on the Weathering of a Dinosaur Fossil From Hami, Xinjiang[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 1106-1111. |
[2] |
ZHANG Liang1, ZHANG Ran2, CUI Li-li3, LI Tao1, GU Da-yong4, HE Jian-an2*, ZHANG Si-xiang1*. Rapid Modification of Surface Plasmon Resonance Sensor Chip by
Graphene Oxide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 795-800. |
[3] |
ZHANG Qi-yan1 , LIU Xiao1, YANG Jie2, 3*, SHI Wei-xin1, GAO Qing-nan1, ZHANG Hong1, DENG Huang1. Application of Micro X-Ray Fluorescence Imaging Technology in Core
Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2200-2206. |
[4] |
LI Ying-ying1, ZHANG Zhi-qing1*, WU Xiao-hong2, Andy Hsitien Shen1*. Photoluminescence in Indonesian Fossil Resins[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 814-820. |
[5] |
REN Jiang-bo1,2, WANG Fen-lian1,2*, HE Gao-wen1, 2, ZHANG Xin3, DENG Xi-guang1,2, YU Hong-xia4. μ-XRF Analysis and Data Mining of Deep-Sea Co-Rich Ferromanganese Nodules in Western Pacific[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1834-1840. |
[6] |
ZHANG Jia-qin1, FANG Zhi-hao2, LIANG Hui-e1*. Preparation and Spectral Analysis of Modern Anti-Ultraviolet Cotton Fabrics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(09): 2770-2774. |
[7] |
JI Bang1,2, ZHAO Wen-feng3, DUAN Jie-li4, FU Lan-hui1, MA Li-zhe3, YANG Zhou1*. Spectral Characteristics of Ag3PO4/GO on Nickel Foam and Photocatalytic Degradation of Ethylene Under Visible Light[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(09): 2743-2750. |
[8] |
TAO Fen1, 2, FENG Bing-gang1, DENG Biao1, 2*, SUN Tian-xi3, DU Guo-hao1, 2, XIE Hong-lan1, 2, XIAO Ti-qiao1, 2. Micro X-Ray Fluorescence Imaging Based on Ellipsoidal Single-Bounce Mono-Capillary[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(07): 2011-2015. |
[9] |
LAN Yun-jiao, LU Yuan*, GUO Fei, GUO Jin-jia, ZHENG Rong-er. A Circular Scanning System of Laser-Induced Breakdown Spectroscopy for Tracking the Element Distribution[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(06): 1947-1951. |
[10] |
WEI Gang1, GU Zheng-ye1, GONG Shui-shui1, GUANG Shan-yi2, KE Fu-you1, XU Hong-yao1*. Determination of the Oxidizability on the Surface of the Graphene Oxide Layer by Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(06): 1722-1727. |
[11] |
LI Zhi-yuan1, LIU Xue-lian1,2, ZHENG An-dong1, WANG Guo-dong1, XIA Guo1,3, LU Hong-bo1,2*. Research on the Spectral Analysis and Stability of Ultraviolet-Enhanced Thin Films with Stable and Tunable Graphene Oxide-Rare Earth Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(02): 379-384. |
[12] |
CHEN Tao, CHEN Meng-yao, DENG Yu-qing. Preliminary Study on Origin Identification of White-Light Gray Gaoshan Stone and Changhua Stone[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(09): 2746-2750. |
[13] |
HE Qiang1,2, WAN Xiong1,2*, WANG Hong-peng1, YUAN Ru-jun1,2. Study on the Distribution of Ca Elements in Ammonite Stones Based on Micro LIBS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(09): 2917-2921. |
[14] |
LIN Xi1, LU Yi-song2, YANG Sheng-yuan1*, LIU Lu-qun1, LI Fei-fei1, HE Shun-zhen1. Visual Colorimetric Detection of Hg(Ⅱ) with Graphene Oxide Peroxidase-Like Activity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(10): 3188-3191. |
[15] |
ZHAN Yan1, ZU Hong-ru1, HUANG Di1*, HU Chao-fan1,2*. Rapid Synthesis of Graphene Oxide Quantum Dots via Hydrothermal Strategy for Cell Imaging Application[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1458-1462. |
|
|
|
|