|
|
|
|
|
|
Quantitative Analysis of Lead and Cadmium Heavy Metal Elements in Soil Based on Principal Component Analysis and Broad Learning System |
LÜ Shu-bin1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2* |
1. School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
2. Yangtze River Delta Research Institute, University of Electronic Science and Technology of China (Huzhou), Huzhou 313001, China
|
|
|
Abstract X-ray fluorescence analysis (XRF) is a remarkably effective analytical technique for quantitatively studying heavy metal elements in soils. Due to matrix effects and elemental interferences, existing machine-learning methods suffer from inadequate performance and instability in predicting lead (Pb) and cadmium (Cd) concentrations using soil XRF spectra. Therefore, this paper proposes a PCA-BLS method for the XRF quantitative analysis of heavy metals in soil based on principal component analysis (PCA) combined with the broad learning system (BLS). It can accurately, efficiently, and stably determine concentrations of Pb and Cd in soil. First, the 56 standard soil data are feature-reduced using PCA. The first three principal components of Pb and Cd are selected as features. Then, the optimal principal component features are fed into the width learning system for calibration and testing. Using the grid search determine the optimal network structure. The three optimum parameters for the BLS corresponding to the Pb and Cd elements are 2, 11, 11 and 3, 19, 15, respectively. Using support vector regression (SVR), BP neural network, and the original BLS compared with the PCA-BLS. PCA-BLS achieved performances of 0.954, 1.433, and 1.014 in the R2, RMSE, and MAPE corresponding to Pb. In the quantitative Cd, PCA-BLS obtains the R2 of 0.982, RMSE of 1.215, and MAPE of 1.059. Grid search visualization demonstrates the stable performance of PCA-BLS in predicting two heavy metal elements. The experimental results show that PCA-BLS can effectively correct for matrix effects and interferences in soil XRF. The PCA-BLS is a promising method for quantitative XRF spectroscopy that accurately predicts Pb and Cd elemental concentrations while maintaining model stability.
|
Received: 2022-12-10
Accepted: 2023-09-25
|
|
Corresponding Authors:
LI Fu-sheng
E-mail: lifusheng@uestc.edu.cn
|
|
[1] Li F, Yang W, Ma Q, et al. Measurement Science and Technology, 2021, 32(10): 105501.
[2] Bai B, Xu T, Nie Q, et al. International Journal of Heat and Mass Transfer, 2020, 153: 119573.
[3] Sergeev A P, Buevich A G, Baglaeva E M, et al. Catena, 2019, 174: 425.
[4] Zhou W, Yang H, Xie L, et al. Catena, 2021, 202: 105222.
[5] Pessanha S, Guilherme A, Carvalho M L. Applied Physics A, 2009, 97(2): 497.
[6] Marini F, Walczak B. Chemometrics and Intelligent Laboratory Systems, 2015, 149: 153.
[7] JIANG Xiao-yu, LI Fu-sheng, WANG Qing-ya, et al(江晓宇, 李福生, 王清亚, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2022, 42(5): 1535.
[8] Abdi H, Williams L J. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(4): 433.
[9] Chen C L P, Liu Z. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(1): 10.
[10] Chen C L P, Liu Z, Feng S. IEEE Transactions on Neural Networks and Learning Systems, 2018, 30(4): 1191.
[11] Wang J, Lyu S, Chen C L, et al. Journal of Intelligent Manufacturing, 2023, 34(4): 1779.
[12] Yang W, Li F, Zhao Y, et al. Analytical Methods, 2022, 14(40):3944.
[13] QIAO Ji-hong, YUAN Xi-yan, WU Jing-zhu, et al(乔继红, 苑希岩, 吴静珠, 等). Journal of Food Safety & Quality(食品安全质量检测学报), 2023, 14(5): 9.
[14] Cheng J, Yu D, Yang Y. Mechanical Systems and Signal Processing, 2007, 21(3): 1197.
[15] Goh A T C. Artificial Intelligence in Engineering, 1995, 9(3): 143. |
[1] |
ZHANG Hai-liang1, NIE Xun1, LIAO Shao-min1, ZHAN Bai-shao1, LUO Wei1, LIU Shu-ling3, LIU Xue-mei2*, XIE Chao-yong1*. Feasibility Study on Identification of Seeds of Hong Kong Seeds 49, October Red and September Fresh Cabbage Based on Visible/Shortwave Near-Infrared Spectroscopy of Partial Least Squares Discriminant (PLS-DA) and Least Squares Support Vector Machine (LS-SVM)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1718-1723. |
[2] |
NING Jing1, 2, ZOU Bin1, 2*, TU Yu-long1, 2, ZHANG Xia3, WANG Yu-long1, 2, TIAN Rong-cai1, 2. Evaluation of Soil As Concentration Estimation Method Based on Spectral Indices[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1472-1481. |
[3] |
WANG Peng1, 2, 3,WANG Zhen-ya2,WANG Shun2,ZHANG Jie2,ZHANG Zhe2,YANG Tian-hang2,WANG Bi-dou1, 2*,LUO Gang-yin1, 2*,WENG Liang-fei2,ZHANG Chong-yu3,LI Yuan3. Fluorescence Crosstalk Correction for Multiple Quantitative PCR Based on Principal Component Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 1151-1157. |
[4] |
ZHENG Pei-chao, ZHOU Chun-yan, WANG Jin-mei*, YIN Yi-tong, ZHANG Li, LÜ Qiang, ZENG Jin-rui, HE Yu-xin. Study on the Detection Method of COD in Surface Water Based on UV-Vis Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(03): 707-713. |
[5] |
WANG Cai-ling1,ZHANG Jing1,WANG Hong-wei2*, SONG Xiao-nan1, JI Tong3. A Hyperspectral Image Classification Model Based on Band Clustering and Multi-Scale Structure Feature Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 258-265. |
[6] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[7] |
HU Cai-ping1, HE Cheng-yu2, KONG Li-wei3, ZHU You-you3*, WU Bin4, ZHOU Hao-xiang3, SUN Jun2. Identification of Tea Based on Near-Infrared Spectra and Fuzzy Linear Discriminant QR Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3802-3805. |
[8] |
LUO Li, WANG Jing-yi, XU Zhao-jun, NA Bin*. Geographic Origin Discrimination of Wood Using NIR Spectroscopy
Combined With Machine Learning Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3372-3379. |
[9] |
FANG Zheng, WANG Han-bo. Measurement of Plastic Film Thickness Based on X-Ray Absorption
Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3461-3468. |
[10] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
[11] |
JIA Zong-chao1, WANG Zi-jian1, LI Xue-ying1, 2*, QIU Hui-min1, HOU Guang-li1, FAN Ping-ping1*. Marine Sediment Particle Size Classification Based on the Fusion of
Principal Component Analysis and Continuous Projection Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3075-3080. |
[12] |
CHEN Jia-wei1, 2, ZHOU De-qiang1, 2*, CUI Chen-hao3, REN Zhi-jun1, ZUO Wen-juan1. Prediction Model of Farinograph Characteristics of Wheat Flour Based on Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3089-3097. |
[13] |
XUE Fang-jia, YU Jie*, YIN Hang, XIA Qi-yu, SHI Jie-gen, HOU Di-bo, HUANG Ping-jie, ZHANG Guang-xin. A Time Series Double Threshold Method for Pollution Events Detection in Drinking Water Using Three-Dimensional Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3081-3088. |
[14] |
JIA Hao1, 3, 4, ZHANG Wei-fang1, 3, LEI Jing-wei1, 3*, LI Ying-ying1, 3, YANG Chun-jing2, 3*, XIE Cai-xia1, 3, GONG Hai-yan1, 3, DING Xin-yu1, YAO Tian-yi1. Study on Infrared Fingerprint of the Classical Famous
Prescription Yiguanjian[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3202-3210. |
[15] |
CAO Qian, MA Xiang-cai, BAI Chun-yan, SU Na, CUI Qing-bin. Research on Multispectral Dimension Reduction Method Based on Weight Function Composed of Spectral Color Difference[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2679-2686. |
|
|
|
|