|
|
|
|
|
|
Temperature Measurement Method for Small Target Medium-Wave
Infrared Spectral Radiation Based on Distance Correction |
LI Wen-kai1, 2, ZHOU Liang1*, LIU Zhao-hui1, CUI Kai1, LIU Kai1, LI Zhi-guo1,XIE Mei-lin1 |
1. Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
|
|
|
Abstract For long-distance space targets moving at high speeds, temperature is one of the important parameters to characterize their working state and performance. Accurately obtaining the temperature of the target has an important reference value for judging its motion state and predicting its situation development. At present, the commonly used processing method of surface target or point target is no longer applicable to the measurement of the radiation characteristics of small targets. At the same time, spectral detection increases the distinguishable information of the target in the wavelength dimension, which can accurately obtain the distribution of the target energy with wavelength, providing a possibility for the inversion of the target temperature, and has great application potential. The slitless spectrometer can reduce the requirements for tracking and stabilization accuracy of space targets, has the characteristics of simple structure, high frame rate and fast response speed, and has high application value in astronomical observation and spacecraft observation. In this paper, we analyzed the spectral calibration model of target infrared radiation characteristic measurement and determined the main parameters in the linear response model of infrared detector pixels. In order to reduce the influence of imaging distance on temperature measurement accuracy, we proposed a target temperature inversion model based on distance correction. The improved temperature measurement accuracy meets the accuracy requirements in practical engineering applications and greatly affects infrared radiation spectrum temperature measurement. Certain guiding significance.
|
Received: 2022-09-07
Accepted: 2022-11-21
|
|
Corresponding Authors:
ZHOU Liang
E-mail: zhouliang@opt.ac.cn
|
|
[1] de Jong A N. Proc SPIE, 1995, 2552: doi:10.1117/12.218217.
[2] CHANG Song-tao, ZHANG Yao-yu, SUN Zhi-yuan, et al(常松涛,张尧禹,孙志远,等). Acta Optica Sinica(光学学报), 2014, 34(5): 15.
[3] TIAN Qi-jie, LI Zhou, CHANG Song-tao, et al(田棋杰,李 周,常松涛,等). Acta Optica Sinica(光学学报), 2017, 37(10): 191.
[4] Pyatt E C. British Journal of Applied Physics, 1954, 5: 264.
[5] SUN Xiao-gang, HE Jin, DAI Jing-min, et al(孙晓刚,何 瑾,戴景民,等). Journal of Harbin Institute of Technology(哈尔滨工业大学学报), 1998, 30(6): 1.
[6] ZHANG Fu-cai, SUN Bo-jun, SUN Xiao-gang(张福才,孙博君,孙晓刚). Infrared and Laser Engineering(红外与激光工程), 2019, 48(2): 276.
[7] ZHANG Fu-cai, SUN Bo-jun, SUN Xiao-gang(张福才,孙博君,孙晓刚). Acta Optica Sinica(光学学报), 2019, 39(2): 208.
[8] SUN Bo-jun, SUN Xiao-gang, DAI Jing-min(孙博君,孙晓刚,戴景民). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(5): 1336.
[9] Willott Chris J, Doyon René, Albert Loic, et al. Publications of the Astronomical Society of the Pacific, 2022, 134(1032): 025002.
[10] McHarg Matthew G, Stenbaek-Nielsen H C, Kammae T. Observations of the STARDUST Sample Return Capsule Entry Using a High Frame Rate Slit-Less Spectrograph, 46th Aiaa Aerospace Sciences Meeting and Exhibit, 2008.
[11] CAO Li-hua, WAN Chun-ming, ZHANG Yun-feng, et al(曹立华,万春明,张云峰,等). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2015, 34(4): 460.
[12] XING Qiang-lin, HUANG Hui-ming, XIONG Ren-sheng, et al(邢强林,黄惠明,熊仁生,等). Acta Photonica Sinica(光子学报), 2004, 33(7): 893.
[13] YANG Ci-yin, ZHANG Jian-ping, CAO Li-hua(杨词银,张建萍,曹立华). Chinese Journal of Scientific Instrument(仪器仪表学报), 2013, 34(2): 304.
|
[1] |
JIANG Yue-peng, CAO Yun-hua*, WU Zhen-sen, CAO Yi-sen, HU Sui-jing. Measurement of Mid-Wave Infrared Hyperspectral Imaging
Characteristics of Ground Targets[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 937-944. |
[2] |
CHEN Feng-yi, ZHANG Yu-gui*, WANG Wei-gang, XU Peng-mei. Research on Asteroid Surface Temperature Inversion Method Based on Wide Wavelength Band Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1162-1167. |
[3] |
WANG Jian-wei1, 2, LI Wei-yan1, SUN Jian-ying1, LI Bing1, CHEN Xin-wen1, TAN Zheng1, ZHAO Na1, LIU Yang-yang1, 3, LÜ Qun-bo1, 3*. Fast Spectral Calibration Method of Spectral Imager[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2013-2017. |
[4] |
YANG Xiao-jun1, 2, 3, 4,WANG Hou-mao1, 2, 3*, LI Ye-fei5, WANG Yong-mei1, 2, 3, 4,HU Xiu-qing6. Temperature in the Near Space From the Emission Spectra of Oxygen A Band[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(01): 5-10. |
[5] |
PEI Guo-chao1, 2, LI Yuan3, 4*, BAI Ting-zhu1, 2. Temporal Variation Model of Ultraviolet Hyperspectral Solar Reference Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2332-2338. |
[6] |
HUANG Shan1, 2, SI Fu-qi1*, ZHAO Min-jie1, ZHOU Hai-jin1, JIANG Yu1. Study on the Slit Function of Atmospheric Trace Gas Differential Optical Absorption Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(07): 2008-2012. |
[7] |
ZHAO Shuai-yang1, HU Xing-bang1, JING Xin2, JIANG Si-jia1, HE Li-qin1, MA Ai-nai1, YAN Lei1*. Analyses of Land Surface Emissivity Characteristics in Mid-Infrared Bands[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1393-1399. |
[8] |
ZOU Yao-pu1, 2, ZHANG Lei1, 2, HAN Chang-pei2*, LI Li-bing2. Study of High Accuracy Spectral Calibration of Fourier Transform Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1268-1275. |
[9] |
XU Na, HU Xiu-qing*, CHEN Lin. Evaluation and Correction of Atmosphere Contamination on the Measurement of the Spectral Response of FY-2 Water Vapor Channels[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(08): 2325-2330. |
[10] |
YANG Yi-fan1, LI Zhe1 , CAI Hong-xing1, LI Yan2 , LI Shuang1*. Inversion Research on the Temperature and Emissivity of High Temperature Spectrum Based on Newton’s Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(05): 1471-1476. |
[11] |
SHI Hai-liang, LI Zhi-wei, LUO Hai-yan, XIONG Wei . Error Correction of Spectral Calibration for Hyper-Spectral Atmosphere CO2 Monitoring Instrument[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(07): 2296-2299. |
[12] |
LI Xin1, 2, ZHANG Li-ming1, 2*, CHEN Hong-yao1, 2, XU Wei-wei1, 2 . On-Orbit Multispectral Sensor Characterization Based on Spectral Tarps [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(03): 811-816. |
[13] |
LIN Jun, SHAO Jun, SONG Chao-yu,LI Yun-wei, LEI Yu-fei . High Precision Spectral Calibration Method of Fourier Interferometric Spectrometer [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(12): 3534-3537. |
[14] |
ZHAO Min-jie, SI Fu-qi*, LU Yi-huai, WANG Yu, WANG Shi-mei, JIANG Yu, ZHOU Hai-jin, LIU Wen-qing . Spectral Calibration of Space-born Imaging Spectrometers Using Spectrum-Matching Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(07): 2049-2053. |
[15] |
SUN Ci1, 2, Bayanheshig1*, CUI Ji-cheng1, PAN Ming-zhong1, LI Xiao-tian1, TANG Yu-guo1 . Full-Field and Automatic Methodology of Spectral Calibration for PGP Imaging Spectrometer [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(08): 2289-2292. |
|
|
|
|