|
|
|
|
|
|
The Effect Analysis of LED Light Environments and Clothing Colors on Consumers’ Behavior |
HE Xiao-yang1, LIU Ze1, SUN Liang2, LIANG Jing1*, SONG Xue-jie1, WANG Cai-yin2, LIU Yan1 |
1. School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China
2. School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
|
|
|
Abstract LED light source has many outstanding performances, including high color rendering, high luminous efficiency, long life and energy saving. It had been widely adopted LEDs lighting for clothing stores. However, there were many problems when choosing a lighting method for a clothing store. For example, the lighting cannot restore the original appearance of the clothing. This can cause consumers to have a weaker perception of the atmosphere and make consumers lose their desire for purchase. This paper was based on the adjustable LED light sources. For the indoor lighting occasions of clothing stores, four types of lighting environments with different physical parameters were designed using general lighting, key lighting, partial lighting and mixed lighting, respectively. With the help of the semantic differential scale of psychophysical experiments, subjective evaluation questionnaires were formed using 36 sets of word pairs. It was using 22 observers (11 males, 11 females) to simulate consumer’s subjective evaluation of preference, attractiveness, coziness and color fidelity of five colors of clothing (black, blue male’s clothing and white, red and yellow female’s clothing) corresponding to the every lighting environment. The difference coefficient was used to verify the stability and accuracy of the subjective evaluation data, and all the data was confirmed to be reliable and valid. The principal component analysis method was used to evaluate the effects of corresponding lighting methods. The basic dimensions of the lighting environment atmosphere of the clothing store had been evaluated as liveness, coziness and commercial. One-factor analysis of variance was used to determine further that liveness was the most important basic dimension of clothing stores. Moreover, this paper analyzed the effects of clothing color on observers’ color perception under the four LED lighting environments. The research results showed that the general lighting method was similar to the traditional light source in terms of lighting effects, and the consumer evaluation indicators were generally lower in clothing stores. Therefore, the general lighting method should not be used alone in clothing stores; the mixed lighting method was more suitable for illuminating black and blue male’s’s clothing and red females’ clothing than other lighting methods. The lighting effect produced was more attractive to consumers; Consumers preferred to illuminate yellow female’s clothing with the particle lighting method. However, the evaluation index of blue male’s clothing was very low under the particle lighting method by consumers. Blue male’s clothing should avoid using partial lighting method in clothing stores. The use of key lighting illuminated white females’ clothing that attracted consumers’ attention.
|
Received: 2021-02-16
Accepted: 2021-04-22
|
|
Corresponding Authors:
LIANG Jing
E-mail: ljlove426@163.com
|
|
[1] ZHAI Qi-yan(翟其彦). Chromatic Adaptations and Color Qualities of Lightings(照明色适应与颜色质量). Hangzhou: Zhejiang University(杭州:浙江大学), 2018.
[2] Vogels. International Symposium Creating an Atmosphere. Grenoble, France, 2008.
[3] Gordon G. Interior Lighting for Designers, 5th Edition. NEW Jersey: John Wiley & Sons, Inc, 2015.
[4] Huang Z, Liu Q, Liu Y, et al. Lighting Research & Technology, 2018: 1477153518816125.
[5] LIU Qiang, TANG Mei-hua(刘 强, 唐美华). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(11): 3664.
[6] LIANG Jing, NING Si-yu, LIAN Yu-sheng, et al(梁 静, 宁思宇, 廉玉生, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析). 2018, 38(10): 3199.
[7] Li H, Luo MR, Liu X Y, et al. Lighting Research & Technology, 2016, 48(4): 412.
[8] Ma S, Wei M, Liang J. Lighting Research & Technology, 2016, 0: 1.
[9] Luo M R, Cui G, Georgoula M. Lighting Research & Technology, 2015, 47: 360.
[10] Liu X Y, Luo MR, Li H. Lighting Research & Technology, 2014, 47(5): 1.
|
[1] |
LEI Hong-jun1, YANG Guang1, PAN Hong-wei1*, WANG Yi-fei1, YI Jun2, WANG Ke-ke2, WANG Guo-hao2, TONG Wen-bin1, SHI Li-li1. Influence of Hydrochemical Ions on Three-Dimensional Fluorescence
Spectrum of Dissolved Organic Matter in the Water Environment
and the Proposed Classification Pretreatment Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 134-140. |
[2] |
XIA Ming-ming1, 2, LIU Jia3, WU Meng1, 2, FAN Jian-bo1, 2, LIU Xiao-li1, 2, CHEN Ling1, 2, MA Xin-ling1, 2, LI Zhong-pei1, 2, LIU Ming1, 2*. Three Dimensional Fluorescence Characteristics of Soluble Organic Matter From Different Straw Decomposition Products Treated With Calcium Containing Additives[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 118-124. |
[3] |
YANG Ke-li1, 2, PENG Jiao-yu1, 2, DONG Ya-ping1, 2*, LIU Xin1, 2, LI Wu1, 3, LIU Hai-ning1, 3. Spectroscopic Characterization of Dissolved Organic Matter Isolated From Solar Pond[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3775-3780. |
[4] |
HUANG Li, MA Rui-jun*, CHEN Yu*, CAI Xiang, YAN Zhen-feng, TANG Hao, LI Yan-fen. Experimental Study on Rapid Detection of Various Organophosphorus Pesticides in Water by UV-Vis Spectroscopy and Parallel Factor Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3452-3460. |
[5] |
QIU Cun-pu1, 2, TANG Xiao-xue2, WEN Xi-xian4, MA Xin-ling2, 3, XIA Ming-ming2, 3, LI Zhong-pei2, 3, WU Meng2, 3, LI Gui-long2, 3, LIU Kai2, 3, LIU Kai-li4, LIU Ming2, 3*. Effects of Calcium Salts on the Decomposition Process of Straw and the Characteristics of Three-Dimensional Excitation-Emission Matrices of the Dissolved Organic Matter in Decomposition Products[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2301-2307. |
[6] |
ZHANG Xin-yuan1, LI Yan2, WEI Dan1, 2*, GU Jia-lin2, JIN Liang2, DING Jian-li2, HU Yu1, ZHANG Xin-yuan1, YANG Hua-wei1. Effect of Rainfall Runoff on DOM Fluorescence of Soil on a Typical Slope Under Vegetation Cover[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1921-1926. |
[7] |
JIANG Xin-tong1, 2, 3, XIAO Qi-tao3, LI Yi-min1, 2, LIAO Yuan-shan1, 2, LIU Dong3*, DUAN Hong-tao1, 2, 3*. Temporal and Spatial Effects of River Input on Dissolved Organic Matter Composition in Lake Bosten[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1636-1644. |
[8] |
ZHU Wei1, 2, YANG Rui-fang1*, ZHAO Nan-jing1*, YIN Gao-fang1, XIAO Xue1, LIU Jian-guo1, LIU Wen-qing1. Study on Small Sample Analysis Method for Identification of Polycyclic Aromatic Hydrocarbons in Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3494-3500. |
[9] |
ZHOU Ming-rui1, 2, QU Jiang-bei2, LI Peng1, 2*, HE Yi-liang1, 2. The “Cluster-Regression” COD Prediction Model of Distributed Rural Sewage Based on Three-Dimensional Fluorescence Spectrum and
Ultraviolet-Visible Absorption Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2113-2119. |
[10] |
YANG Xin1, 2, WU Zhi-hang3, YE Yin1, 2*, CHEN Xiao-fang1, 2, YUAN Zi-ran1, 2, WANG Jing1, 2. Parallel Factor Analysis of Fluorescence Excitation Emission Matrix Spectroscopy of DOM in Waters of Agricultural Watershed of Dianbu River[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 978-983. |
[11] |
LIU Tian-shun1, 2, LI Peng-fa1, 2, LI Gui-long1, 2, WU Meng1, LIU Ming1, LIU Kai1, 2, LI Zhong-pei1, 2*. Using Three-Dimensional Excitation-Emission Matrix to Study the Compositions of Dissolved Organic Matter in the Rhizosphere Soil of Continuous Cropping Peanuts With Different Health States[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 634-641. |
[12] |
LOU Meng-han1, 2, JIN Hong-mei2, 3, 4*, LIANG Dong2, 3, ZHU Yan-yun2, 3, ZHU Ning2, 3, 4, LI Dan-yang2, 3. Fluorescence Spectra Characteristics of Dissolved Organic Matter in Mesophilic Anaerobic Digestion of Pig and Dairy Manure Slurries[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 141-146. |
[13] |
LI Yu-yang1, 2, GUO Yan-ni2, ZHU Jun-yu2, ZHOU Lei2, 3, ZHOU Yong-qiang2, 3, HU Chun-hua1*. Characterizing Chromophoric Dissolved Organic Matter (CDOM) in Lake Chaohu in Different Hydrologic Seasons[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3286-3293. |
[14] |
XIAO You-gan1, CHEN Hong-jing1, WEI Zhong-qing1, CHEN Shou-bin1, SHANGGUAN Hai-dong1, LIN Hui2, LI Zhong-sheng2, LIN Ze-ying3, FAN Gong-duan2*. Three-Dimensional Fluorescence Characteristics Analysis of DOM in the Process of Treatment of Brackish Water by Ultrafiltration-Nanofiltration Double Membrane Process[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2518-2523. |
[15] |
HU Yu1, WEI Dan1, 2*, LI Yan1, WANG Wei3, BAI Yang1, JIN Liang2, CAI Shan-shan4. Impact of Synergistic Fertilizer on the Flurorescence Characteristics of Soil Fulvic Acid Based on the Flurorescence Spectroscopy Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1360-1366. |
|
|
|
|