|
|
|
|
|
|
Measurement on Mass Growth Factors of (NH4)2SO4, NH4NO3, and Mixed (NH4)2SO4/NH4NO3 Aerosols Under Linear RH Changing Mode |
LI Qiong, MA Shuai-shuai, PANG Shu-feng, ZHANG Yun-hong* |
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081,China |
|
|
Abstract The hygroscopicity of aerosol particles determines their size, concentration, chemical compositions and phase states, and thus affects the global climate, heterogeneous atmospheric chemistry and human health. In this study, an on-line and in-situ rapid scan attenuated total reflection Fourier transform infrared (ATR-FTIR) technique coupled with a linear relative humidity (RH) controlling system was utilized to obtain the IR spectra of aerosols under different RH. The mass growth factors (MGFs), deliquescence relative humidity (DRH) and efflorescence relative humidity (ERH) of (NH4)2SO4, NH4NO3, and mixed (NH4)2SO4/NH4NO3 aerosols were determined rapidly by measuring the peak areas of the bending vibration band of liquid water (~1 640 cm-1). Comparisons between the measurements and the predictions from the E-AIM model showed good consistency, which verifies the rapid scan ATR-FTIR as a powerful tool for investigating hygroscopic behaviors and phase transitions of atmospheric aerosols. Furthermore, pure (NH4)2SO4 and NH4NO3 particles were found to effloresce at 49% and 25% RH, respectively, while mixed (NH4)2SO4/NH4NO3 aerosols with a mole ratio of 1∶1 and 1∶2 exhibited one-stage efflorescence transition beginning at 44% and 38% RH, respectively, upon dehydration. These results indicate that the presence of NH4NO3 can inhibit the crystallization of (NH4)2SO4, and formed (NH4)2SO4 seeds will act as heterogeneous nuclei to promote the efflorescence of NH4NO3 at higher RH. In addition, the double salt (NH4)2SO4·2NH4NO3 was formed upon efflorescence of mixed particles. These findings are critical for understanding complex phase transitions of mixed inorganic aerosols and interpretation for RH dependency of heterogeneous reaction rates of atmospheric reactive species.
|
Received: 2020-10-15
Accepted: 2021-02-26
|
|
Corresponding Authors:
ZHANG Yun-hong
E-mail: yhz@bit.edu.cn
|
|
[1] Petters M D, Kreidenweis S M. Atmospheric Chemistry and Physics,2007, 7:1961.
[2] Chan M N, Chan C K. Environmental Science & Technology,2003, 37:5109.
[3] Finlay W H, Stapleton K W, Zuberbuhler P. International Journal of Pharmaceutics,1997, 149:63.
[4] Chang P P, Zhang Y H. Chinese Journal of Light Scattering(光散射学报), 2020, 32: 295.
[5] Lü X J, Zhang Y H. Acta Chimica Sinica(化学学报), 2020, 78: 326.
[6] Gysel M, Weingartner E, Baltensperger U. Environmental Science & Technology,2002, 36:63.
[7] Hernandez Paredes J, Glossman Mitnik D, Esparza Ponce H E, et al. Journal of Molecular Structure,2008, 875:295.
[8] Hoffman R C, Laskin A, Finlayson Pitts B J. Journal of Aerosol Science,2004, 35:869.
[9] Hu D W, Qiao L P, Chen J M, et al. Aerosol and Air Quality Research,2010, 10:255.
[10] Pilinis C, Pandis S N, Seinfeld J H. Journal of Geophysical Research-Atmospheres,1995, 100:18739.
[11] Haywood J, Boucher O. Reviews of Geophysics,2000, 38:513.
[12] Yu H, Kaufman Y J, Chin M, et al. Atmospheric Chemistry and Physics 2006, 6:613.
[13] Poschl U. Angewandte Chemie-International Edition,2005, 44:7520.
[14] Hyslop N P. Atmospheric Environment,2009, 43:182.
[15] Tang M J, Larish W A, Fang Y, et al. Journal of Physical Chemistry A,2016, 120:5609.
[16] Liu B Y H, Pui D Y H, Whitby K T, et al. Atmospheric Environment,1978, 12:99.
[17] Cziczo D J, Nowak J B, Hu J H, et al. Journal of Geophysical Research-Atmospheres,1997, 102:18843.
[18] Ma Q X, Liu Y C, He H. Journal of Physical Chemistry A,2010, 114:4232.
[19] Chan C K, Flagan R C, Seinfeld J H. Journal of the American Ceramic Society,1998, 81:646.
[20] Liang Z, Chan C K. Aerosol Science and Technology,1997, 26:255.
[21] Choi M Y, Chan C K. Journal of Physical Chemistry A,2002, 106:4566.
[22] Ma S S, Yang W, Zheng C M, et al. Atmospheric Environment,2019, 210:177.
[23] Davies J F, Haddrell A E, Reid J P. Aerosol Science and Technology,2012, 46:666.
[24] Tang I N, Munkelwitz H R. Atmospheric Environment,1993, 27:467.
[25] Esat K, David G, Poulkas T, et al. Physical Chemistry Chemical Physics,2018, 20:11598.
[26] Wise M E, Martin S T, Russell L M, et al. Aerosol Science and Technology,2008, 42:281.
[27] Djikaev Y S, Bowles R, Reiss A H, et al. Journal of Physical Chemistry B,2001, 105:7708.
[28] Lightstone J M, Onasch T B, Imre D, et al. The Journal of Physical Chemistry A,2000, 104:9337.
[29] Cziczo D J, Abbatt J P D. Journal of Physical Chemistry A,2000, 104:2038.
[30] Liu Y, Yang Z, Desyaterik Y, et al. Analytical Chemistry,2008, 80:633.
[31] Zhang Y H, Choi M Y, Chan C K. The Journal of Physical Chemistry A,2006, 110:7516.
[32] Li Y J, Liu P F, Bergoend C, et al. Aerosol Science and Technology,2016, 51:388.
[33] Chan C K, Flagan R C, Seinfeld J H. Atmospheric Environment. Part A. General Topics,1992, 26:1661.
[34] Tang I N. Journal of Geophysical Research: Atmospheres,1996, 101:19245.
[35] Han J H, Hung H M, Martin S T. Journal of Geophysical Research,2002, 107:AAC 3.
[36] Richardson C B, Snyder T D. Langmuir,1994, 10:2462.
[37] Ji Z R, Zhang Y, Pang S F, et al. The Journal of Physical Chemistry A,2017, 121:7968.
[38] Zhang Q N, Zhang Y, Cai C, et al. The Journal of Physical Chemistry A,2014, 118:2728.
[39] Sun J, Liu L, Xu L, et al. Journal of Geophysical Research: Atmospheres,2018, 123:1234.
[40] Schlenker J C, Malinowski A, Martin S T, et al. Journal of Physical Chemistry A,2004, 108:9375.
[41] Ge Z, Wexler A S, Johnston M V. Journal of Colloid & Interface Science,1996, 183:68.
[42] Sun J X, Liu L, Xu L, et al. Journal of Geophysical Research-Atmospheres,2018, 123:1234.
[43] Tang I N. Journal of Aerosol Science,1976, 7:361.
[44] Tang I N, Munkelwitz H R, Davis J G. Journal of Aerosol Science,1978, 9:505.
[45] Huang R J, Zhang Y, Bozzetti C, et al. Nature,2014, 514:218.
[46] Jing B, Tong S, Liu Q, et al. Atmospheric Chemistry and Physics,2016, 16:4101.
[47] Li W, Sun J, Xu L, et al. Journal of Geophysical Research: Atmospheres,2016, 121:13.
[48] Fairlie T D, Jacob D J, Dibb J E, et al. Atmospheric Chemistry and Physics,2010, 10:3999. |
[1] |
QIAO Lu1, LIU Rui-na1, ZHANG Rui1, ZHAO Bo-yu1, HAN Pan-pan1, 2, ZHOU Chun-ya1, 3, ZHANG Yu-qing1, 4, DONG Cheng-ming1*. Analysis of Spectral Characteristics of Soil Under Different Continuous Cropping of Rehmannia Glutinosa Based on Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 541-548. |
[2] |
GAO Le-le1, ZHONG Liang1, DONG Hai-ling1, LAI Yu-qiang5, LI Lian1,3*, ZANG Heng-chang1, 2, 3, 4*. Characterization of Moisture Absorption Process of Stevia and Rapid Determination of Rebaudioside a Content by Using Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 415-422. |
[3] |
WAN Hong-bing, LI Hai-peng, LEI Yuan-hua, XIE Peng, ZHANG Song-shan, FENG Yong-hong, LIU Xuan, WANG Huan, SUN Bao-zhong*. Effect of Degree of Doneness on Conformation of Myofibrillar Proteins by Two-Dimensional Infrared Correlation Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2082-2086. |
[4] |
LIU Hai-shun1, ZHANG Zhen-wei1*, YANG Yu-ping2, WU Xu3, ZHANG Cun-lin1. The Far Infrared Spectra of Five Dyes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(10): 3064-3069. |
[5] |
LIU Qian1, 2, SUN Pei-yan2, 3, GAO Zhen-hui2, 3, CAI Wen-sheng1, SHAO Xue-guang1* . Classification of Oils by Attenuated Total Reflectance-Fourier Transform Infrared Spectrometry Combined with Pattern Recognition Techniques [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2010, 30(03): 663-666. |
[6] |
HONG Qing-hong1,2,CHENG Ze-feng2,LI Qun-li1. Application of HATR-FTIR Spectroscopy Combined with Cluster Analysis to Identification of Cuscuta Chinensis Lam and Its Unofficial Varieties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2008, 28(08): 1803-1805. |
[7] |
HONG Qing-hong1,2,CHENG Cun-gui2*,CHENG Ze-feng2,LI Dan-ting2 . Application of HATR-FTIR Spectroscopy to the Analysis of Quality Mensuration of Rhizoma Atractylodes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2007, 27(02): 283-286. |
|
|
|
|