|
|
|
|
|
|
Hyperspectral Band Selection Based on Improved Particle Swarm Optimization Algorithm |
ZHANG Liu1, YE Nan1, MA Ling-ling2, WANG Qi2, LÜ Xue-ying1, ZHANG Jia-bao1* |
1. College of Instrumentation & Electrical Engineering,Jilin University, Changchun 130061, China
2. Key Laboratory of Quantitative Remote Sensing Information Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China |
|
|
Abstract Hyperspectral images have hundreds of continuous and narrow spectral bands, spanning visible light to infrared light. They can provide fine spectral properties of ground objects and have important application value for recognizing and classifying ground objects’ materials and attributes. It is of great significance to select limited spectral bands for transmission and processing of interested targets, improving the timeliness of hyperspectral data processing and designing practical spectrometers for specific applications. Selecting the optimal band combined with the target features becomes an inevitable requirement to improve the processing efficiency and ensure the accuracy of target recognition or classification. Therefore, selecting the band subset with better classification and recognition ability from hundreds of hyperspectral images is an urgent problem to be solved. This paper proposes a hyperspectral band selection method based on the improved particle swarm optimization algorithm. This method is different from the traditional particle swarm optimization algorithm by introducing the “probability jump characteristic” and setting the elimination mechanism of the new solution to eliminate the “stagnation” new solution, which improves the global optimization performance of the algorithm. Then, based on the spectral characteristics of the target, the objective optimization function of optimal band selection is adopted. The improved particle swarm optimization algorithm is used to solve the objective function, and the selected band subset is fed back to the support vector machine (SVM) for classification application. In this paper, two standard hyperspectral datasets (Indian pines, The experimental results show that the proposed method has higher classification accuracy than the existing methods. Among the several methods, the traditional particle swarm optimization algorithm has the worst effect; the waveband selected by the proposed algorithm has the best classification accuracy, and the classification accuracy of the two data sets can reach 98.141 4% and 99.084 8%, respectively.
|
Received: 2020-10-06
Accepted: 2021-02-23
|
|
Corresponding Authors:
ZHANG Jia-bao
E-mail: zhangjiabao@jlu.edu.cn
|
|
[1] Zhang Mingyang, Gong Maoguo, Chan Yongqiang. Applied Soft Computing, 2018, 70: 604.
[2] Long Y, Rivard B, Rogge D, et al. International Journal of Applied Earth Observation and Geoinformation, 2019, 79: 35.
[3] Yang J, Honavar V. IEEE Intelligent Systems & Their Applications, 1998, 13(2): 44.
[4] Wang M, Wu C, Wang L, et al. Knowledge Based Systems, 2019, 168(15): 39.
[5] Ghosh A, Datta A, Ghosh S, et al. Applied Soft Computing, 2013, 13(4): 1969.
[6] Yang X, Deb S. Cuckoo Search via Levy Flights. Proceedings of the World Congrees on Nature and Biologically Inspired Computing, 2009: 210.
[7] WANG Li-guo, WEI Fang-jie(王立国,魏芳洁). Journal of Image and Graphics(中国图像图形学报),2013,18(2):235.
[8] Ding S, Yuan X, Chen L. Acta Geodaeticaet Cartographica Sinica, 2010, 39(3): 257.
[9] Qi C, Zhou Z, Sun Y, et al. Neurocomputing, 2016, 220(12): 181.
[10] Clerc M, Kennedy J. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58.
[11] GAO Ying, XIE Sheng-li(高 鹰,谢胜利). Computer Engineering and Applications(计算机工程与应用), 2004, 40: 47.
[12] DU Song, ZHOU Jian-yong(杜 松,周健勇). Computer Simulation(计算机仿真), 2015, 32(12): 218.
[13] Medjahed S A, AitSaadi T, Benyettou A, et al. Egyptian Journal of Remote Sensing & Spaceence, 2016, 19(2): 163.
[14] Lv X, Wang Y, Deng J, et al. Improved Particle Swarm Optimization Algorithm Based on Last-Eliminated Principle and Enhanced Information Sharing. Computational Intelligence and Neuroscience, 2018, doi: 10.1155/2018/5025672.
[15] Bonah E, Huang X, Yi R, et al. Infrared Physics & Technology, 2020, 105: 103220. |
[1] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[2] |
YANG Guang1, JIN Chun-bai1, REN Chun-ying2*, LIU Wen-jing1, CHEN Qiang1. Research on Band Selection of Visual Attention Mechanism for Object
Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 266-274. |
[3] |
WANG Cai-ling1,ZHANG Jing1,WANG Hong-wei2*, SONG Xiao-nan1, JI Tong3. A Hyperspectral Image Classification Model Based on Band Clustering and Multi-Scale Structure Feature Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 258-265. |
[4] |
GAO Hong-sheng1, GUO Zhi-qiang1*, ZENG Yun-liu2, DING Gang2, WANG Xiao-yao2, LI Li3. Early Classification and Detection of Kiwifruit Soft Rot Based on
Hyperspectral Image Band Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 241-249. |
[5] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[6] |
GAO Wei-ling, ZHANG Kai-hua*, XU Yan-fen, LIU Yu-fang*. Data Processing Method for Multi-Spectral Radiometric Thermometry Based on the Improved HPSOGA[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3659-3665. |
[7] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[8] |
SHEN Si-cong, ZHANG Jing-xue, CHEN Ming-hui, LI Zhi-wei, SUN Sheng-nan, YAN Xue-bing*. Estimation of Above-Ground Biomass and Chlorophyll Content of
Different Alfalfa Varieties Based on UAV Multi-Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3847-3852. |
[9] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
[10] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[11] |
LIU Fei1, TAN Jia-jin1*, XIE Gu-ai2, SU Jun3, YE Jian-ren1. Early Diagnosis of Pine Wilt Disease Based on Hyperspectral Data and Needle Resistivity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3280-3285. |
[12] |
MA Qian1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, CHENG Hui-zhu1, 2, ZHAO Yan-chun1, 2. Research on Classification of Heavy Metal Pb in Honeysuckle Based on XRF and Transfer Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2729-2733. |
[13] |
LÜ Shi-lei1, 2, 3, WANG Hong-wei1, LI Zhen1, 2, 3*, ZHOU Xu1, ZHAO Jing1. Hyperspectral Identification Model of Cantonese Tangerine Peel Based on BWO-SVM Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2894-2901. |
[14] |
WANG Jun-jie1, YUAN Xi-ping2, 3, GAN Shu1, 2*, HU Lin1, ZHAO Hai-long1. Hyperspectral Identification Method of Typical Sedimentary Rocks in Lufeng Dinosaur Valley[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2855-2861. |
[15] |
ZHANG Fu1, 2, WANG Xin-yue1, CUI Xia-hua1, YU Huang1, CAO Wei-hua1, ZHANG Ya-kun1, XIONG Ying3, FU San-ling4*. Identification of Maize Varieties by Hyperspectral Combined With Extreme Learning Machine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2928-2934. |
|
|
|
|