|
|
|
|
|
|
Study on the Space and Anisotropy of Phonon Thermal Radiation in Metal/Dielectric Thin Films |
DONG Xin, ZHANG Xia, SUN Xue-bo, YUAN Shuang-xiu, XU Hui, SU Fu-fang* |
School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China |
|
|
Abstract Based on the approach to combine theory, experiment and simulation, this paper highlights the space and anisotropy of phonons thermal radiation utilizing metal/dielectric (MD) structure. Phonons, the elementary excitation characterizing the vibrations of lattice, are the eigenstates of materials. Albeit phonons controlled difficultly, the couplings between phonon modes and other photonic excitations enable exotic optical phenomena. Notably, surface phonon polaritons (SPhP) emanate from the coupling between phonon modes of polar dielectrics and photons in the infrared to terahertz. SPhP is featuring tight electromagnetic field confinement, low optical loss, and complementary to those provided by plasmon polaritos, facilitates access to deep subdiffraction optics. Firstly, the paper theoretically analyzed phonons absorption based on the Huang-kun equation and superlattice continuous dielectric model to further understand the internal theoretical foundation of phonons absorption. Experimentally, the research object we took into account was SiO2 phonons, and then, the 500 nm-thick SiO2 thin films respectively were synthesized on Si/Al(150 nm)thin films and Si substrate utilizing plasma chemical vapor deposition( PECVD) approach. The thermal radiation spectra were obtained at normal angle, which fourier transform infrared (FTIR) implemented. Phonons thermal radiation spectra in MD structure and in the non-MD structure were compared by analysing thermal radiation spectra and simulation spectra calculated by finite-difference time-domain (FDTD), demonstrating that MD structure was more conducive to stimulate phonons and SPhP. Longitudinal optical (LO) phonons emerge merely at oblique-incident in accordance to Berreman effect. LO phonons was obviously non-radiation due to the thermal radiation spectra obtained at normal- incidence. However, it made a difference on the liner-shaped of transverse optical (TO) phonons. What’s more, from the metal(Si/Al)/dielectric(SiO2 thin films)thermal radiation angle diagram of two kinds of polarizations, we could observe that the SiO2 phonons in Si/Al/SiO2 thin films abided by Lyddano-Sachs-Teller (LST) relation, LO phonons and TO phonons appeared in pairs, and the spatial radiation characteristic of the two phonons differed. In addition, the difference between the phonons modes appearing under S polarization and under P polarization existed, verifying the spatial anisotropy of phonons. Especially, the coupling of phonons and photons could stimulate SPhP, in turn, SPhP could enhance the absorption of phonons. Strikingly, the phonon modes and SPhP enable to be stimulated and tuned based on MD structure, which set the stage for the implementation of these appealing concepts in infrared optical devices.
|
Received: 2020-08-03
Accepted: 2020-12-26
|
|
Corresponding Authors:
SU Fu-fang
E-mail: sufufang628@163.com
|
|
[1] Kadic M, Milton G W, van Hecke M, et al. Nature Reviews Physics, 2019, 1(3): 198.
[2] Foteinopoulou S, Devarapu G C R, Subramania G S, et al. Nanophotonics, 2019, 8(12): 2129.
[3] Peng C, Ou K, Li G, et al. Optics Express, 2020, 28(8): 11721.
[4] Hafeli A K, Rephaeli E, Fan S H, et al. Journal of Applied Physics, 2011, 110(4): 043517.
[5] Tsai W-Y, Wang C-M, Chen C-F, et al. Scientific Reports, 2017, 7:42076.
[6] Zhang Z. Nano/Microscale Heat Transfer, America: McGraw-Hill Education, 2007.
[7] De Zoysa M, Asano T, Mochizuki K, et al. Nature Photonics, 2012, 6(8): 535.
[8] Shitrit N, Yulevich I, Maguid E, et al. Science, 2013, 340(6133): 724.
[9] HUANG Kun(黄 昆). Solid State Physics(固体物理学). Beijing: Higher Education Press(北京: 高等教育出版社), 1988.
[10] HUANG Kun(黄 昆). Progress in Natural Science:Communications From State Key Laboratories of China(自然科学进展:国家重点实验室通讯), 1994, 4(5): 514.
[11] Vassants, Huqonin J P, Marquier F, et al. Optics Express, 2012, 20(21): 23971.
[12] Harbecke B, Heinz B. Grosse P. Applied Physics A, 1985, 38(4): 263.
[13] Zhang X, Liu H, Zhang Z G, et al. Scientific Reports, 2017, 7: 41858.
[14] Gunde M K. Physica B-condensed Matter, 2000, 292(3): 286. |
[1] |
LI Xin-quan1, 2,ZHANG Jun-qiang1, 3*,WU Cong-jun1,MA Jian1, 2,LU Tian-jiao1, 2,YANG Bin3. Optical Design of Airborne Large Field of View Wide Band Polarization Spectral Imaging System Based on PSIM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 250-257. |
[2] |
ZHAO Ling-yi1, 2, YANG Xi3, WEI Yi4, YANG Rui-qin1, 2*, ZHAO Qian4, ZHANG Hong-wen4, CAI Wei-ping4. SERS Detection and Efficient Identification of Heroin and Its Metabolites Based on Au/SiO2 Composite Nanosphere Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3150-3157. |
[3] |
KANG Ying1, ZHUO Kun1, LIAO Yu-kun1, MU Bing1, QIN Ping2, LI Qian1, LUAN Xiao-ning1*. Quantitative Determination of Alcohol Concentration in Liquor Based on Polarized Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2768-2774. |
[4] |
QI Chen, YU Tao*, ZHANG Zhou-feng, ZHONG Jing-jing, LIU Yu-yang, WANG Xue-ji, HU Bing-liang. Design and Research of a Compact Polarization Spectral Imaging Method Based on Double Gaussian[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2082-2089. |
[5] |
ZHONG Jing-jing1, 2, LIU Xiao1, 3, WANG Xue-ji1, 3, LIU Jia-cheng1, 3, LIU Hong1, 3, QI Chen1, 3, LIU Yu-yang1, 2, 3, YU Tao1, 3*. A Multidimensional Information Fusion Algorithm for Polarization
Spectrum Reconstruction Based on Nonsubsampled Contourlet
Transform[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1254-1261. |
[6] |
LI Yi-chao1, 2, FU Jia1*, LÜ Bo1*, HUANG Yao1, QIAN Jin-ping1, LU Zheng-ping1, FU Sheng-yu1, LI Jian-kang1, WEI Yong-qing3, LIU Dong-mei4, XIAO Bing-jia1. A Photoelastic Modulator Based MSE Spectroscopic Diagnostic on EAST[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 111-115. |
[7] |
JIA Wen-bao1, LI Jun1, ZHANG Xin-lei1, YANG Xiao-yan2, SHAO Jin-fa3, CHEN Qi-yan1, SHAN Qing1*LING Yong-sheng1, HEI Da-qian4. Study on Sample Preparation Method of Plant Powder Samples for Total Reflection X-Ray Fluorescence Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 169-174. |
[8] |
SHI Dong-dong, CAO Zhao-bin, HUAN Yan-hua, GONG Yan-chun, WU Wen-yuan, YANG Jun*. Reflection Polarization Spectral Characteristics of High Performance Coating Material La2Zr2O7[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 2995-2999. |
[9] |
WANG Xiao, LIU Mu-hua, XU Jiang*. Study on Spectral Detection System of Emulsified Oil Based on the Degree of Dispersion Polarization[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2689-2693. |
[10] |
SONG Zi-hao, HAN Yang*, WEI Chen-yang, CHEN Xin, GU Qian-yi, LIU Zi-ping, LIU Sha-sha. Comparison of Polarized Spectral Characteristics Between
Petroleum-Polluted Cropland Soil and Wetland Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2603-2609. |
[11] |
TANG Guang-tong1, YAN Hui-bo1, WANG Chao-yang1, LIU Zhi-qiang1, LI Xin1, YAN Xiao-pei1, ZHANG Zhong-nong2, LOU Chun2*. Experimental Investigation on Hydrocarbon Diffusion Flames: Effects of Combustion Atmospheres on Flame Spectrum and Temperature[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1654-1660. |
[12] |
QIAO Wen-long1, 2, ZHOU Liang1*, LIU Zhao-hui1, GONG Yong-hui3, JIANG Le1, LÜ Yuan-yuan1, 2, ZHAO He-tong1, 2. Study on Multispectral Polarization Characteristics of Biological Tissues[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1070-1075. |
[13] |
ZHANG Zi-han1, YAN Lei1,2, LIU Si-yuan1, FU Yu1, JIANG Kai-wen1, YANG Bin3, LIU Sui-hua4, ZHANG Fei-zhou1*. Leaf Nitrogen Concentration Retrieval Based on Polarization Reflectance Model and Random Forest Regression[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2911-2917. |
[14] |
ZHENG Feng-xun1, ZHU Jia-yi2, HOU Wei-zhen3, LI Zheng-qiang3*. Effect Analysis of Using Different Polarization Quantities in Aerosol Retrieval From Satellite Observation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2212-2218. |
[15] |
LI Xiu, PAN Jie, HUANG Min*, XI Yong-hui, LIU Zi-han. Influence of Assembly Conditions on Spectral Properties of SiO2 Structural Color Coatings Prepared by Rapid Coating Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2314-2320. |
|
|
|
|