|
|
|
|
|
|
Advantages of X-Ray Spectrometry in Origin of Life, Earth Life on Earth and Global Climate Change |
LUO Li-qiang, SHEN Ya-ting |
National Research Center of Geoanalysis, Beijing 100037, China |
|
|
Abstract Origin of life and evolution, early life on Earth and the global climate changes are among the major concerns because of their close relations with human beings. X-ray spectrometry (X-ray fluorescence and X-ray absorption) plays an important role in making scientific discoveries by determination of the elements and their species. In the review, we demonstrate the application of XRS to the studies in the origin of life, the identification of life traces on the early Earth and the global climate changes. Major reviews are on (1) how the analyses of C, Fe and S species are used in interpreting their roles in the hydrothermal vents and the RNA world; (2) what are the difficulties in the identification of early life and can be done by the determination of stromatolite,minerals with disproportionation reaction and organic microfossils in the identification of biogenic and abiogenic process; (3) what are the correlations among Fe sources, the species, organic matter and the bioavailability in the carbon circles in the oceans and the inland water systems.
|
Received: 2020-11-01
Accepted: 2021-01-18
|
|
|
[1] Lowery C M, Bralower T J, Owens J D, et al. Nature, 2018, 558(7709): 288.
[2] Orgel L E. Crit. Rev. Biochem. Mol. Biol., 2004, 39(2): 99.
[3] Powner M W, Gerland B, Sutherland J D. Nature, 2009, 459(7244): 239.
[4] Martin W, Russell M J. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 2003, 358(1429): 59.
[5] Bada J L. Earth and Planetary Science Letters, 2004, 226(1): 1.
[6] Pressman A, Blanco C, Chen Irene A. Current Biology, 2015, 25(19): R953.
[7] Öberg K I, Guzmán V V, Furuya K, et al. Nature, 2015, 520(7546): 198.
[8] Viennet J C, Bernard S, Le Guillou C, et al. Applied Clay Science, 2020, 191: 105616.
[9] Ukai M, Yokoya A, Fujii K, et al. Radiation Physics and Chemistry, 2008, 77(10): 1265.
[10] Ukai M, Yokoya A, Fujii K, et al. Chemical Physics Letters, 2010, 495(1): 90.
[11] Akabayov B, Doonan C, Pickering I, et al. Journal of Synchrotron Radiation, 2005, 12: 392.
[12] Nisbet E G, Sleep N H. Nature, 2001, 409: 1083.
[13] Early Life on Earth: A Practical Guide, 2009: 24.
[14] Wilde S A, Valley J W, Peck W H, et al. Nature, 2001, 409(6817): 175.
[15] Martin W, Baross J, Kelley D, et al. Nature Reviews Microbiology, 2008, 6(11): 805.
[16] Matamoros-Veloza A, Cespedes O, Johnson B R G, et al. Nature Communications, 2018, 9(1): 3125.
[17] Li M, Toner B M, Baker B J, et al. Nature Communications, 2014, 5(1): 3192.
[18] Toner B M, Fakra S C, Manganini S J, et al. Nature Geoscience, 2009, 2(3): 197.
[19] Handley K M, Boothman C, Mills R A, et al. The ISME Journal, 2010, 4(9): 1193.
[20] Edwards K J, Glazer B T, Rouxel O J, et al. The ISME Journal, 2011, 5(11): 1748.
[21] Schulte M, Blake D, Hoehler T, et al. Astrobiology, 2006, 6(2): 364.
[22] Sleep N H, Meibom A, Fridriksson T, et al. Proc. Natl. Acad. Sci. USA, 2004, 101(35): 12818.
[23] Miller H M, Mayhew L E, Ellison E T, et al. Geochimica et Cosmochimica Acta, 2017, 209: 161.
[24] Le Guillou C, Changela H G, Brearley A J. Earth and Planetary Science Letters, 2015, 420: 162.
[25] Ibrahim I M, Wu H, Ezhov R, et al. Communications Biology, 2020, 3(1): 13.
[26] Wolfe-Simon F, Blum J, Kulp T, et al. Science (New York, N. Y.), 2011, 332: 1163.
[27] Lindgren J, Sjövall P, Thiel V, et al. Nature, 2018, 564(7736): 359.
[28] Edwards N P, van Veelen A, Anné J, et al. Scientific Reports, 2016, 6(1): 34002.
[29] Barden H E, Bergmann U, Edwards N P, et al. Palaeobiodiversity and Palaeoenvironments, 2015, 95(1): 33.
[30] Wogelius R, Manning P, Barden H E, et al. Science (New York, N. Y.), 2011, 333: 1622.
[31] Manning P, Edwards N, Bergmann U, et al. Nature Communications, 2019, 10: 2250.
[32] Manning P L, Edwards N P, Wogelius R A, et al. Journal of Analytical Atomic Spectrometry, 2013, 28(7): 1024.
[33] Dodd M S, Papineau D, Grenne T, et al. Nature, 2017, 543(7643): 60.
[34] Sugitani K, Grey K, Allwood A, et al. Precambrian Research, 2007, 158(3-4): 228.
[35] Kiyokawa S, Ito T, Ikehara M, et al. Geological Society of America Bulletin, 2006, 118(1): 3.
[36] Rasmussen B. Nature, 2000, 405(6787): 676.
[37] Wacey D, Kilburn M R, Mcloughlin N, et al. Journal of the Geological Society, 2008, 165(1): 43.
[38] Shen Y, Buick R, Canfield D E. Nature, 2001, 410(6824): 77.
[39] Westall, Vries, De S T, et al. Special Paper of the Geological Society of America, 2006.
[40] Noffke N, Eriksson K A, Hazen R M, et al. Geology, 2006, 34(4): 253.
[41] Glikson M, Duck L J, Golding S D, et al. Precambrian Research, 2008, 164(3): 187.
[42] Rosing M T. Science, 1999, 283: 674.
[43] Papineau D, De Gregorio B T, Stroud R M, et al. Geochimica et Cosmochimica Acta, 2010, 74(20): 5884.
[44] Tashiro T, Ishida A, Hori M, et al. Nature, 2017, 549: 516.
[45] Witze A. Nature, 2017: 10. 1038/nature. 2017. 22685.
[46] van Zuilen M A, Lepland A, Arrhenius G. Nature, 2002, 418(6898): 627.
[47] Nemchin A A, Whitehouse M J, Menneken M, et al. Nature, 2008, 454: 92.
[48] Papineau D, De Gregorio B T, Cody G D, et al. Geochimica et Cosmochimica Acta, 2010, 74(20): 5862.
[49] Lepland A, van Zuilen M A, Philippot P. Geobiology, 2011, 9(1): 2.
[50] Lollar B S, McCollom T M. Nature, 2006, 444(7121): E18.
[51] Summons R E, Jahnke L L, Hope J M, et al. Nature, 1999, 400(6744): 554.
[52] Machado A S, Santos R S, Rodrigues A G, et al. X-Ray Spectrometry, 2019, 48(5): 543.
[53] Ohtomo Y, Kakegawa T, Ishida A, et al. Nature Geoscience, 2014, 7: 25.
[54] Sitko R, Zawisza B, Krzykawski T, et al. Talanta, 2009, 77(3): 1105.
[55] Bibi I, Niazi N K, Choppala G, et al. Science of the Total Environment, 2018, 640-641: 1424.
[56] Zhu X, Kalirai S S, Hitchcock A P, et al. Journal of Electron Spectroscopy and Related Phenomena, 2015, 199: 19.
[57] Akhter F, Fairhurst G D, Blanchard P E R, et al. X-Ray Spectrometry, 2020, 49(4): 471.
[58] Luo L, Shen Y, Ma Y, et al. X-Ray Spectrometry, 2019, 48(5): 401.
[59] Cardenas D, Turyanskaya A, Rauwolf M, et al. X-Ray Spectrometry, 2020, 49(3): 424.
[60] Flannigan E L, Campbell J L, Spray J G, et al. X-Ray Spectrometry, 2020, 49(6): 651.
[61] Chubarov V, Amosova A, Finkelshtein A. X-Ray Spectrometry, 2020, 49(5): 615.
[62] Maltsev A S, Ivanov A V, Chubarov V M, et al. Talanta, 2020, 214: 120870.
[63] Bazin D, Carpentier X, Brocheriou I, et al. Biochimie, 2009, 91(10): 1294.
[64] Nutman A P, Bennett V C, Friend C R L, et al. Nature, 2016, 537(7621): 535.
[65] Allwood A C, Rosing M T, Flannery D T, et al. Nature, 2018, 563(7730): 241.
[66] Alleon J, Bernard S, Le Guillou C, et al. Nature Communications, 2016, 7(1): 11977.
[67] Bernard S, Horsfield B, Schulz H-M, et al. Marine and Petroleum Geology, 2012, 31: 70.
[68] Bernard S, Wirth R, Schreiber A, et al. International Journal of Coal Geology, 2012, 103: 3.
[69] Benzerara K, Menguy N, López-García P, et al. Proceedings of the National Academy of Sciences of USA, 2006, 103(25): 9440.
[70] Couradeau E, Benzerara K, Gérard E, et al. Science (New York, N. Y.), 2012, 336: 459.
[71] Leinweber P, Kruse J, Walley F, et al. Journal of Synchrotron Radiation, 2007, 14: 500.
[72] Cody G, Gupta N, Briggs D, et al. Geology, 2011, 39: 255.
[73] Cody G D, Heying E, Alexander C M O, et al. Proceedings of the National Academy of Sciences of USA, 2011, 108(48): 19171.
[74] Solomon D, Lehmann J, Kinyangi J, et al. Soil Science Society of America Journal, 2009, 73(6): 1817.
[75] Bernard S, Papineau D. Elements, 2014, 10(6): 435.
[76] Bernard S, Benzerara K, Beyssac O, et al. Earth and Planetary Science Letters, 2007, 262(1): 257.
[77] Feely R A, Doney S, Cooley S, et al. Impacts of Ocean Acidification the Other CO<sub>2</sub> Crisis, 2010.
[78] Duplessy J C. CO2 Air-Sea Exchange During Glacial Times: Importance of Deep Sea Circulation Changes, 1986.
[79] Alfredo M G, Sigman D M, Haojia R, et al. Science, 2014, 343(6177): 1347.
[80] Moore J K, Doney S C, et al. Deep-Sea Research Part Ⅱ, 2001, 49(1): 463.
[81] Sigman D M, Boyle E A. Nature, 2000, 407: 859.
[82] Tagliabue A, Bowie A R, Boyd P W, et al. Nature, 2017, 543: 51.
[83] Jickells T D, An Z S, Andersen K K, et al. Science, 2005, 308(5718): 67.
[84] Martin J H, Gordon R M, Fitzwater S, et al. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(5): 649.
[85] Boyd P W, Ellwood M J. Nature Geoscience, 2010, 3(10): 675.
[86] Duce R A, Tindale N W. Limnology & Oceanography, 1991, 36(8): 1715.
[87] Schroth A W, Crusius J, Sholkovitz E R, et al. Nature Geoscience, 2009, 2: 337.
[88] Melton E D, Swanner E D, Behrens S, et al. Nature Reviews Microbiology, 2014, 12: 797.
[89] Wehrli B. Nature, 2013, 503: 346.
[90] Raymond P A, Hartmann J, Lauerwald R, et al. Nature, 2013, 503: 355.
[91] Mendonça R, Müller R A, Clow D, et al. Nature Communications, 2017, 8(1): 1694.
[92] Lalonde K, Mucci A, Ouellet A, et al. Nature, 2012, 483: 198.
[93] Sholkovitz E R, Sedwick P N, Church T M. Geochimica et Cosmochimica Acta, 2009, 73(14): 3981.
[94] Falkowski P G. Limnology & Oceanography Bulletin, 2016, 25(1): 26.
[95] Williams R J P. Proceedings of the Royal Society of London, 1981, 213(1193): 361.
[96] Moore E K, Jelen B I, Giovannelli D, et al. Nature Geoscience, 2017, 10(9): 629.
[97] Barbeau K, Rue E L, Bruland K W, et al. Nature, 2001, 413(6854): 409.
[98] Shaked Y, Kustka A B, Morel F O M M. Limnology & Oceanography, 2005, 50(3): 872.
[99] Shoenfelt E M, Sun J, Winckler G, et al. Science Advances, 2017, 3(6): e1700314.
[100] Kraemer S M. Aquatic Sciences, 2004, 66(1): 3.
[101] Barber A, Brandes J, Leri A, et al. Scientific Reports, 2017, 7(1): 366.
[102] Eglinton T I. Nature, 2012, 483: 165.
[103] Aguilar-Islas A M, Wu J, Rember R, et al. Marine Chemistry, 2010, 120(1): 25.
[104] Rubin M, Berman-Frank I, Shaked Y. Nature Geoscience, 2011, 4(8): 529.
[105] Kleber M, Sollins P, Sutton R. Biogeochemistry, 2007, 85(1): 9.
[106] Chen K-Y, Chen T-Y, Chan Y-T, et al. Environmental Science & Technology, 2016, 50(23): 12612.
[107] Chen C, Dynes J J, Wang J, et al. Environmental Science & Technology, 2014, 48(23): 13751.
[108] Keiluweit M, Bougoure J J, Zeglin L H, et al. Geochimica et Cosmochimica Acta, 2012, 95: 213.
[109] Merrot P, Juillot F, Noël V, et al. Science of the Total Environment, 2019, 689: 1212.
[110] Inagaki T M, Possinger A R, Grant K E, et al. Geochimica et Cosmochimica Acta, 2020, 270: 244. |
[1] |
HAN Xue1, 2, LIU Hai1, 2, LIU Jia-wei3, WU Ming-kai1, 2*. Rapid Identification of Inorganic Elements in Understory Soils in
Different Regions of Guizhou Province by X-Ray
Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 225-229. |
[2] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[3] |
LI Xiao-li1, WANG Yi-min2*, DENG Sai-wen2, WANG Yi-ya2, LI Song2, BAI Jin-feng1. Application of X-Ray Fluorescence Spectrometry in Geological and
Mineral Analysis for 60 Years[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 2989-2998. |
[4] |
ZHOU Qing-qing1, LI Dong-ling1, 2, JIANG Li-wu1, 3*, WAN Wei-hao1, ZENG Qiang4, XUE Xin4, WANG Hai-zhou1, 2*. Quantitative Statistical Study on Dendritic Component Distribution of Single Crystal Blade Based on Microbeam X-Ray Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2112-2118. |
[5] |
DU Zhi-heng1, 2, 3, HE Jian-feng1, 2, 3*, LI Wei-dong1, 2, 3, WANG Xue-yuan1, 2, 3, YE Zhi-xiang1, 2, 3, WANG Wen1, 2, 3. A New EDXRF Spectral Decomposition Method for Sharpening Error Wavelets[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1719-1724. |
[6] |
LIN Jing-tao, XIN Chen-xing, LI Yan*. Spectral Characteristics of “Trapiche-Like Sapphire” From ChangLe, Shandong Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1199-1204. |
[7] |
WU Lei1, LI Ling-yun2, PENG Yong-zhen1*. Rapid Determination of Trace Elements in Water by Total Reflection
X-Ray Fluorescence Spectrometry Using Direct Sampling[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 990-996. |
[8] |
XU Wei-xuan1, CHEN Wen-bin2, 3*. Determination of Barium in Purple Clay Products for Food Contact by
Energy Dispersive X-Ray Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 475-483. |
[9] |
CHEN Ji-wen, YANG Zhen, ZHANG Shuai, CUI En-di, LI Ming*. Fast Resolution Algorithm for Overlapping Peaks Based on Multi-Peak Synergy and Pure Element Characteristic Peak Area Normalization[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 151-155. |
[10] |
JIA Wen-bao1, LI Jun1, ZHANG Xin-lei1, YANG Xiao-yan2, SHAO Jin-fa3, CHEN Qi-yan1, SHAN Qing1*LING Yong-sheng1, HEI Da-qian4. Study on Sample Preparation Method of Plant Powder Samples for Total Reflection X-Ray Fluorescence Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 169-174. |
[11] |
TANG Ju1, 2, DAI Zi-yun2*, LI Xin-yu2, SUN Zheng-hai1*. Investigation and Research on the Characteristics of Heavy Metal Pollution in Children’s Sandpits Based on XRF Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3879-3882. |
[12] |
GUO Xiao-hua1, ZHAO Peng1, WU Ya-qing1, TANG Xue-ping3, GENG Di2*, WENG Lian-jin2*. Application of XRF and ICP-MS in Elements Content Determinations of Tieguanyin of Anxi and Hua’an County, Fujian Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3124-3129. |
[13] |
WANG Yi-ya1, WANG Yi-min1*, GAO Xin-hua2. The Evaluation of Literature and Its Metrological Statistics of X-Ray Fluorescence Spectrometry Analysis in China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1329-1338. |
[14] |
JIANG Xiao-yu1, 2, LI Fu-sheng2*, WANG Qing-ya1, 2, LUO Jie3, HAO Jun1, 2, XU Mu-qiang1, 2. Determination of Lead and Arsenic in Soil Samples by X Fluorescence Spectrum Combined With CARS Variables Screening Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1535-1540. |
[15] |
NI Zi-yue1, CHENG Da-wei2, LIU Ming-bo2, YUE Yuan-bo2, HU Xue-qiang2, CHEN Yu2, LI Xiao-jia1, 2*. The Detection of Mercury in Solutions After Thermal Desorption-
Enrichment by Energy Dispersive X-Ray Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1117-1121. |
|
|
|
|