|
|
|
|
|
|
Development of Vehicle-Mounted in-situ Soil Parameters Detector Based on NIR Diffuse Reflection |
ZHOU Peng, LI Min-zan*, YANG Wei, JI Rong-hua, MENG Chao |
Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China |
|
|
Abstract Variable fertilizing requires the rapid and in-situ high-accuracy collection of farmland soil nutrients information. However, existing equipment could not meet the needs of field measurement in precision agriculture. Hence, a vehicle-mounted in-situ soil parameters detector was developed based on near-infrared (NIR) diffuse reflection. The detector used a tungsten halogen light source with better illumination stability instead of sunlight to perform soil spectrum detection to improve the adaptability of the instrument to working conditions. A soil total nitrogen measurement extreme learning machine model consisting of seven sensitive wavelengths (1 070, 1 130, 1 245, 1 375, 1 450, 1 550, 1 680 nm) was developed to improve the real-time measurement accuracy. The detector consisted of a mechanical part, optical part and control part. The mechanical part provided platform support for the detector, The optical part was composed of a halogen tungsten light source, a light source adapter flange, a NIR guiding fiber, and a set of detection assembly including an incident light exit end, seven InGaAS photodetectors, and seven single-band filters. The control part realized the collection and processing of the soil measurement signal with a MSP430F149 main control chip module When the detector performed farmland soil nutrients detection, and the tungsten halogen light source transmitted the detection light source to the surface of the detection soil through the NIR guiding fiber and incident light exit end of the detection assembly. The diffuse light from the surface of the detection soil was used to detect soil nutrient parameters. A light source adapter flange at the junction of the tungsten halogen light source and the NIR guiding fiber was designed to minimize the loss of the detection source during transmission. The filter of detection assembly filtered the diffuse light to become a single-band detection light, and the InGaAS photodetector realized photoelectric conversion of the single-band detection light, and the signal processing unit calculated the reflectance at each sensitive wavelength. After the development of the detector was completed, a standard gray board was used as the measurement object to conduct the optical calibration test. The test results showed that the correlation coefficient (R) between the reflectance value of the detector at seven sensitive wavelengths and the reflectance value of the MATRIX-I type Fourier spectrum analyzer had a maximum of 0.997 8 and an average of 0.927 8, which indicated that the detector had higher detection accuracy. In order to further evaluate the detection accuracy of farmland nutrients content using the detector, and the farmland application test of the detector was carried out at the Tongzhou Experimental Station of China Agricultural University. The test results showed that the correlation coefficient (R) between the measured value of soil nutrients content using the detector and the laboratory standard test method were all above 0.90. The test results showed that the vehicle-mounted in-situ soil parameters detector could realize rapid in-situ high-accuracy collection of farmland nutrients information.
|
Received: 2019-08-10
Accepted: 2019-12-22
|
|
Corresponding Authors:
LI Min-zan
E-mail: limz@cau.edu.cn
|
|
[1] Kweon G, Maxton C. Biosystems Engineering, 2013, 115(1):66.
[2] Evangelou S, Stamatiadis J S, Schepers E, et al. Precision Agriculture, 2018, 19(3):570.
[3] Luo Y Q, Zhao X Y, Wang T, et al. Acta Prataculturae Sinica, 2017, 26(8):200.
[4] Song X D, Yang F, Ju B, et al. CATENA, 2018, 171:588.
[5] ZHOU Peng, YANG Wei, LI Min-zan, et al(周 鹏,杨 玮,李民赞,等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2017, 48(S1):271.
[6] Yao X Q, Yang W, Li M Z, et al. IFAC-PapersOnLine,2018, 51(17):660.
[7] Morellos A, Pantazi X E, Moshou D, et al. Biosystems Engineering, 2016, 152:104.
[8] Zhang S, Shao M, Li D. Geoderma, 2017, 295:119.
[9] Zhang Y, Li M Z, Zheng L H, et al. Computers and Electronics in Agriculture, 2016, 124(C):29.
[10] AN Xiao-fei, LI Min-zan, ZHENG Li-hua, et al(安晓飞, 李民赞, 郑立华, 等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2012, 43(s1):283.
[11] Zhou P, Zhang Y, Yang W, et al. Computers and Electronics in Agriculture, 2019, 160:51.
[12] Kodaira M, Shibusawa S. Geoderma, 2013, 199:64.
[13] Maleki M R, Mouazen A M, Ramon H, et al. Soil and Tillage Research, 2007, 94(1):239.
[14] Maleki M R, Mouazen A M, Ketelaere B D, et al. Biosystems Engineering, 2008, 99(1):35.
[15] An X, LiM Z, Zheng L H, et al. Precision Agriculture, 2014, 15(1):3.
[16] Zhou P, Yang W, Li M Z, et al. IFAC-PapersOnLine, 2018, 51(17):51.
[17] CHENG Meng, ZHANG Jun-yi, LI Min-zan, et al(程 萌, 张俊逸, 李民赞, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2017, 33(s1):157.
[18] ZHANG Yao, LI Min-zan, ZHENG Li-hua, et al(张 瑶, 李民赞, 郑立华, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2015, 31(9):121. |
[1] |
LIU Wen-bo, LIU Jin, HAN Tong-shuai*, GE Qing, LIU Rong. Simulation of the Effect of Dermal Thickness on Non-Invasive Blood Glucose Measurement by Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2699-2704. |
[2] |
YAN Xue-jun1, ZHOU Yang2, HU Dan-jing1, YU Dan-yan1, YU Si-yi1, YAN Jun1*. Application of UV-VIS Diffuse Reflectance Spectrum, Raman and
Photoluminescence Spectrum Technology in Nondestructive
Testing of Yellow Pearl[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1703-1710. |
[3] |
CUI De-jian1, LIU Yang-yang1, XIA Yuan-tian1, JIA Wei-e1, LIAN Zheng-xing2, LI Lin1*. Non-Destructive Detection of Egg Fertilization Status Based on Hyperspectral Diffuse Reflectance[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3685-3691. |
[4] |
YAN Jun1, FANG Shi-bin1, YAN Xue-jun1, SHENG Jia-wei2, XU Jiang1, XU Chong3, ZHANG Jian2*. Study on the Common Effect of Heat Treatment, Dyeing or Irradiation Treatment on UV-Vis Diffuse Reflectance Spectra of Pearls[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3697-3702. |
[5] |
FANG Shi-bin1, JIANG Yang-ming1, YAN Jun1, 2, YAN Xue-jun1, ZHOU Yang3, ZHANG Jian2*. The Types of UV-Vis Diffuse Reflectance Spectra of Common Gray Pearls and Their Coloring Mechanism[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3703-3708. |
[6] |
WANG Jing1, 2*, CHEN Zhen3, GAO Quan-zhou1. Diffuse Reflectance Spectroscopy Study of Mottled Clay in the Coastal
Area of Fujian and Guangdong Provinces and the Interpretation of Its
Origin and Sedimentary Environment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2494-2498. |
[7] |
ZHU Meng-yuan1, 2, LÜ Bin1, 2*, GUO Ying2. Comparison of Haematite and Goethite Contents in Aeolian Deposits in Different Climate Zones Based on Diffuse Reflectance Spectroscopy and Chromaticity Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1684-1690. |
[8] |
ZHANG Fu1, 2, 3, CUI Xia-hua1, DING Ke4*, ZHANG Ya-kun1, WANG Yong-xian1, PAN Xiao-qing5. Study on the Influence of Different Pretreatment Methods on Gender Determination of Multiposition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 434-439. |
[9] |
YANG Jiong1, 2, QIU Zhi-li1, 4*, SUN Bo3, GU Xian-zi5, ZHANG Yue-feng1, GAO Ming-kui3, BAI Dong-zhou1, CHEN Ming-jia1. Nondestructive Testing and Origin Traceability of Serpentine Jade From Dawenkou Culture Based on p-FTIR and p-XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 446-453. |
[10] |
XU Zhao-jin, LI Dong-liang, SHEN Li*. Study on Diffuse Reflection and Absorption Spectra of Organic and Inorganic Chinese Painting Pigments[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3915-3921. |
[11] |
ZHANG Fu1, 2, 3, CUI Xia-hua1, ZHANG Ya-kun1, WANG Yong-xian1. Relationship Between Visible/Near Infrared Spectral Data and Fertilization Information at Different Positions of Hatching Eggs[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3064-3068. |
[12] |
LI Hao-guang1,2, YU Yun-hua1,2, PANG Yan1, SHEN Xue-feng1,2. Study on Near-Infrared Spectrum Acquisition Method of Non-Uniform Solid Particles[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2748-2753. |
[13] |
LIU Yan-de, WANG Jun-zheng, JIANG Xiao-gang, LI Li-sha, HU Xuan, CUI Hui-zhen. Research on Vis/NIR Detection of Apple’s SSC Based on Multi-Mode Adjustable Optical Mechanism[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2064-2070. |
[14] |
LIN Nan1,2, LIU Hai-qi3, YANG Jia-jia4, WU Meng-hong1, LIU Han-lin1. Hyperspectral Estimation of Soil Nutrient Content in the Black Soil Region Based on BA-Adaboost[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3825-3831. |
[15] |
WANG Peng1,2, SUN Di2, MU Mei-rui3, LIU Hai-xue3, ZHANG Ke-qiang2, MENG Xiang-hui1, YANG Ren-jie1*, ZHAO Run2*. Rapid Detection of Total Nitrogen Through the Manure Movement of in Large-Scale Dairy Farm by Near-Infrared Diffuse Reflectance Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 3287-3291. |
|
|
|
|