|
|
|
|
|
|
Experimental Investigation of Infrared Spectral Emissivity of Pure Tungsten |
YU Kun1, SHI Rui-tao1, ZHANG Hui-yan1, WANG Wen-bao2, LIU Yu-fang1 |
1. College of Physics & Materials Science, Henan Normal University, Xinxiang 453007, China
2. College of Physics & Engineering,Xingyi Normal University for Nationalities, Xingyi 562400, China |
|
|
Abstract Spectral emissivity can be considered as a surface thermal physical property of materials, which is widely applied in radiation thermometry, heat transfer calculation and so on. Tungsten is a significant metal, but its spectral emissivity is rarely reported. Based on energy contrast method, a device measuring spectral emissivity is built, which is composed of four parts: standard reference blackbody, a Fourier transform infrared (FTIR) spectrometer, sample heating chamber, and optical system. This device can measure the spectral emissivity of samples in the wavelength range of 3~20 μm, and the overall uncertainty of this apparatus is better than 5%. The normal spectral emissivity of pure tungsten is measured by this device at four temperatures (573, 673, 773, 873 K), and the effects of oxidation, temperature, wavelength and heating time on the normal spectral emissivity of pure tungsten are analyzed in detail. The results showed that the variations of the spectral emissivity of unoxidized pure tungsten at four different temperatures were basically similar, and the difference of these values was relatively small, however, the spectral emissivity rapidly increased when the sample was oxidized and the strong oscillations were found at some wavelengths. The effect of temperature on the spectral emissivity of pure tungsten was slight when the sample wasn’t oxidized, while the spectral emissivity rapidly increased with increasing temperature when the samples was oxidized. The spectral emissivity of pure tungsten decreased with increasing wavelength. When the surface of the sample was oxidized, four peaks appeared at 4, 9, 12.5 and 16.5 μm due to the interference effect between the oxide layer and the metal substrate. At 573 and 673 K, the spectral emissivity of pure tungsten does not change significantly with increasing heating time. However, as the temperature increased, the spectral emissivity increased with increasing heating time at 773 and 873 K. At 773 K, the rate of the spectral emissivity increasing with increasing heating is relatively fast, and the surface of pure tungsten begins to be oxidized with large oxidation rate. At 873 K, the increase of spectral emissivity with increasing heating time is relatively flat, and remains stable. In summary, the variation of spectral emissivity of pure tungsten is relatively stable at lower temperature and unoxidizedstate. As the temperature increases, the spectral emissivity increases rapidly and strong oscillation occurs at multiple wavelengths when the surface is oxidized. It can be seen that the spectral emissivity of pure tungsten is greatly affected by the heating time, temperature and wavelength. In practice, especially in radiation thermometry, if the spectral emissivity of pure tungsten is regarded as a constant, the measurement error will be large. This study will further enrich the data of spectral emissivity of pure tungsten, and provide reference for scientific research and applications.
|
Received: 2018-11-16
Accepted: 2019-03-29
|
|
|
[1] ZHU Ze-zhong, SHEN Hua, WANG Nian, et al(朱泽忠, 沈 华, 王 念, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2017, 37(3): 685.
[2] Purpura C, Trifoni E, Musto M, et al. Measurement, 2016, 82(3): 403.
[3] Wang P, Xie Z, Hu Z W. International Journal of Thermophysics, 2016, 37(12): 129.
[4] Iuchi T, Gogami A. Measurement, 2010, 43(5): 645.
[5] Hagqvist P, Sikström F, Christiansson A K. Measurement, 2013, 46(2): 871.
[6] Kong Bo, Li Ting, Eri Q. Applied Thermal Engineering, 2017, 113(11): 20.
[7] Li L, Yu K, Zhang K, et al. International Journal of Heat & Mass Transfer, 2016, 101: 699.
[8] Kong B, Li T, Eri Q. Journal of Alloys & Compounds, 2017, 703: 125.
[9] Zhao S, Li X, Cheng K, et al. Applied Thermal Engineering, 2016, 109(10): 214.
[10] Brodu E, Balat-Pichelin M, Sans J L, et al. Acta Materialia, 2015, 84: 305.
[11] Yu K, Zhang H Y, Liu Y, et al. International Journal of Heat & Mass Transfer, 2019, 129: 1066. |
[1] |
ZHANG Ning-chao1, YE Xin1, LI Duo1, XIE Meng-qi1, WANG Peng1, LIU Fu-sheng2, CHAO Hong-xiao3*. Application of Combinatorial Optimization in Shock Temperature
Inversion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3666-3673. |
[2] |
LIANG Ya-quan1, PENG Wu-di1, LIU Qi1, LIU Qiang2, CHEN Li1, CHEN Zhi-li1*. Analysis of Acetonitrile Pool Fire Combustion Field and Quantitative
Inversion Study of Its Characteristic Product Concentrations[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3690-3699. |
[3] |
LI Wei1, TAN Feng2*, ZHANG Wei1, GAO Lu-si3, LI Jin-shan4. Application of Improved Random Frog Algorithm in Fast Identification of Soybean Varieties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3763-3769. |
[4] |
LI Xiao-dian1, TANG Nian1, ZHANG Man-jun1, SUN Dong-wei1, HE Shu-kai2, WANG Xian-zhong2, 3, ZENG Xiao-zhe2*, WANG Xing-hui2, LIU Xi-ya2. Infrared Spectral Characteristics and Mixing Ratio Detection Method of a New Environmentally Friendly Insulating Gas C5-PFK[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3794-3801. |
[5] |
CHEN Heng-jie, FANG Wang, ZHANG Jia-wei. Accurate Semi-Empirical Potential Energy Function, Ro-Vibrational Spectrum and the Effect of Temperature and Pressure for 12C16O[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3380-3388. |
[6] |
ZHU Hua-dong1, 2, 3, ZHANG Si-qi1, 2, 3, TANG Chun-jie1, 2, 3. Research and Application of On-Line Analysis of CO2 and H2S in Natural Gas Feed Gas by Laser Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3551-3558. |
[7] |
YU Hao-zhang, WANG Fei-fan, ZHAO Jian-xun, WANG Sui-kai, HE Shou-jie*, LI Qing. Optical Characteristics of Trichel Pulse Discharge With Needle Plate
Electrode[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3041-3046. |
[8] |
YANG Chun-mei1, ZHU Zan-bin1, 2*, LI Yu-cheng1, MA Yan1, SONG Hai-yang3. Bark Content Determination of Ultra-Thin Fibreboard by
Hyperspectral Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3266-3271. |
[9] |
WEI Zi-kai, WANG Jie, ZHANG Ruo-yu, ZHANG Meng-yun*. Classification of Foreign Matter in Cotton Using Line Scan Hyperspectral Transmittance Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3230-3238. |
[10] |
TIAN Fu-chao1, CHEN Lei2*, PEI Huan2, BAI Jie-qi1, ZENG Wen2. Diagnosis of Emission Spectroscopy of Helium, Methane and Air Plasma Jets at Atmospheric Pressure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2694-2698. |
[11] |
ZENG Si-xian1, REN Xin1, HE Hao-xuan1, NIE Wei1, 2*. Influence Analysis of Spectral Line-Shape Models on Spectral Diagnoses Under High-Temperature Conditions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2715-2721. |
[12] |
KONG De-ming1, LIU Ya-ru1, DU Ya-xin2, CUI Yao-yao2. Oil Film Thickness Detection Based on IRF-IVSO Wavelength Optimization Combined With LIF Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2811-2817. |
[13] |
WANG Jun-jie1, YUAN Xi-ping2, 3, GAN Shu1, 2*, HU Lin1, ZHAO Hai-long1. Hyperspectral Identification Method of Typical Sedimentary Rocks in Lufeng Dinosaur Valley[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2855-2861. |
[14] |
WANG Chun-hui1, 2, YANG Na-na2, 3, FANG Bo2, WEI Na-na2, ZHAO Wei-xiong2*, ZHANG Wei-jun1, 2. Frequency Locking Technology of Mid-Infrared Quantum Cascade Laser Based on Molecule Absorption[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2363-2368. |
[15] |
TANG Ruo-han1, 2, LI Xiu-hua1, 2*, LÜ Xue-gang1, 2, ZHANG Mu-qing2, 3, YAO Wei2, 3. Transmittance Vis-NIR Spectroscopy for Detecting Fibre Content of
Living Sugarcane[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2419-2425. |
|
|
|
|