|
|
|
|
|
|
Prediction of Soil Organic Matter for Farmlands Covered With High
Density of Vegetation Based on UAV Hyperspectral Data |
WANG Jie1, SUN Xiao-lin2*, WU Dan-hua3, ZHOU Ya-nan1, LIU Chang4, CAO Yue4, TANG Ye-tao4, ZHANG Mei-wei1, WANG Xiao-qing1, ZENG Ling-tao1, CUI Yu-pei1 |
1. School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China
2. College of Agriculture, Guangxi University, Nanning 530004, China
3. Anfeng Town Integrated Service Center, Yancheng 224221, China
4. School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
|
|
|
Abstract Accurate estimation of soil organic matter (SOM) content and its spatial distribution is crucial for sustainable agriculture and ecological management.Traditional SOM content measurement methods are insufficient, especially for high-density vegetation areas in tropical and subtropical regions. The widespread use of unmanned aerial vehicles (UAVs) and numerous studies predicting soil information based on vegetation remote sensing data provide a solution to this problem.To evaluate the proposed approach, a 75-hectare agricultural field in Shaoguan City, Guangdong Province, was selected as the study area. UAV hyperspectral imagery of vegetation at crop maturity was first acquired, and 103 soil samples were collected and transported to the laboratory for hyperspectral measurement and SOM content analysis. Subsequently, the continuous wavelet transform (CWT) was applied to extract features from both the UAV vegetation and laboratory soil hyperspectral data. Finally, SOM content estimation and mapping were performed using random forest algorithms on the hyperspectral data before and after feature extraction, with the results compared to those obtained using Ordinary Kriging-based mapping. The results indicate that: (1) There is a significant correlation between UAV vegetation hyperspectral data and SOM content, although the accuracy of SOM content estimation using UAV vegetation hyperspectral data was slightly lower than that using soil hyperspectral data; (2) After CWT, the accuracy of SOMcontent estimation using UAV vegetation hyperspectral data was superior to that of soil hyperspectral data, though still slightly lower than that of soil hyperspectral data after CWT; (3) The mapping accuracy of SOM content inversion using UAV vegetation hyperspectral data was better than that of the traditional Ordinary Kriging method, and was highly refined. Considering the significant advantages of UAV vegetation hyperspectral data in terms of cost and efficiency, this study suggests that the method of SOM contentestimation and mapping using UAV vegetation hyperspectral data is promising for providing abundant and detailed soil information for smart agriculture and other fields.
|
Received: 2025-02-25
Accepted: 2025-06-16
|
|
Corresponding Authors:
SUN Xiao-lin
E-mail: xiaolinsun@gxu.edu.cn
|
|
[1] REN Pin-pin, HUANG Feng, LI Bao-guo(任频频,黄 峰,李保国). Acta Pedologica Sinica(土壤学报), 2022, 59(2): 440.
[2] SONG Qi, GAO Xiao-hong, SONG Yu-ting, et al(宋 奇,高小红,宋玉婷, 等). Remote Sensing for Natural Resources(自然资源遥感), 2024, 36(2): 160.
[3] WANG Jian-yi, YANG Wen, WANG Yu-chuan, et al(王荐一,杨 雯,王玉川, 等). Chinese Journal of Soil Science(土壤通报), 2022, 53(6): 1320.
[4] Hong Y, Yu L, Chen Y, et al. Remote Sensing, 2018, 10(1): 28.
[5] Moura-Bueno J M, Dalmolin R S D, Ten Caten A, et al. Geoderma, 2019, 337: 565.
[6] LIU Huan-jun, PAN Yue, DOU Xin, et al(刘焕军,潘 越,窦 欣, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2018, 34(1): 127.
[7] GUO Jia-xin, ZHU Qing, ZHAO Xiao-min, et al(国佳欣,朱 青,赵小敏, 等). Chinese Journal of Applied Ecology(应用生态学报), 2020, 31(3): 863.
[8] WANG Li-ping, LIU Huan-jun, ZHENG Shu-feng, et al(王丽萍,刘焕军,郑树峰, 等). Soils(土壤), 2022, 54(1): 184.
[9] Dou X, Wang X, Liu H J, et al. Geoderma, 2019, 356: 113896.
[10] McBratney A B, Mendonça Santos M L, Minasny B. Geoderma, 2003, 117(1): 3.
[11] Jin X L, Liu S Y, Baret F, et al. Remote Sensing of Environment, 2017, 198: 105.
[12] Jin H X, Peng J J, Bi R T, et al. Agronomy, 2024, 14(1): 175.
[13] Hong Y, Chen S, Chen Y, et al. Soil and Tillage Research, 2020, 199: 104589.
[14] Kooistra L, Salas E A L, Clevers J G P W, et al. Environmental Pollution, 2004, 127(2): 281.
[15] WANG Xi, LI Yu-huan, WANG Rui-yan, et al(王 曦,李玉环,王瑞燕, 等). Chinese Journal of Applied Ecology(应用生态学报), 2020, 31(7): 2399.
[16] WANG Yi-jing, DING Qi-dong, ZHANG Jun-hua, et al(王怡婧,丁启东,张俊华, 等). Chinese Journal of Applied Ecology(应用生态学报), 2023, 34(11): 3045.
[17] XIA Chen-zhen, JIANG Yan-yan, ZHANG Xing-yu, et al(夏晨真,姜艳艳,张星宇, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2023, 43(8): 2617.
[18] WANG Yin-yin, QI Yan-bing, CHEN Yang, et al(王茵茵,齐雁冰,陈 洋, 等). Acta Pedologica Sinica(土壤学报), 2016, 53(2): 342.
[19] LI Yan-li, PAN Xian-zhang, WANG Chang-kun, et al(李燕丽,潘贤章,王昌昆, 等). Acta Ecologica Sinica(生态学报), 2014, 34(18): 5283.
[20] Wei L F, Yuan Z R, Wang Z X, et al. Sensors, 2020, 20(10): 2777.
[21] Zhou Y, Liu C, Wang J, et al. Journal of Hazardous Materials, 2025, 484: 136689.
[22] YANG Ping-ru, LIU Teng-hui(杨萍如,刘腾辉). Journal of Natural Resources(自然资源学报), 1994, 9(2): 112.
[23] Wang Y, Zhang X, Sun W, et al. Science of the Total Environment, 2022, 838: 156129.
[24] Chen H, Pan T, Chen J, et al. Chemometrics and Intelligent Laboratory Systems, 2011, 107(1): 139.
[25] Krishnan P, Alexander J D, Butler B J, et al. Soil Science Society of America Journal, 1980, 44(6): 1282.
[26] Guo F, Xu Z, Ma H, et al. Ecological Indicators, 2021, 133: 108400.
[27] Asadzadeh S, de Souza Filho C R. International Journal of Applied Earth Observation and Geoinformation, 2016, 47: 69.
[28] Banskota A, Falkowski M J, Smith A M S, et al. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(3): 1526.
[29] Zhang S W, Shen Q, Nie C J, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 211: 393.
[30] GUO Bin, BAI Hao-rui, ZHANG Bo, et al(郭 斌,白昊睿,张 波, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2022, 38(10): 138.
[31] Vohland M, Ludwig M, Harbich M, et al. Journal of Near Infrared Spectroscopy, 2016, 24(3): 255.
[32] Li D, Cheng T, Jia M, et al. Remote Sensing of Environment, 2018, 206: 1.
[33] Wang G Q, Fang Q Q, Teng Y G, et al. International Journal of Applied Earth Observation and Geoinformation, 2016, 53: 48.
[34] Breiman L. Machine Learning, 2001, 45: 5.
[35] Liaw A, Wiener M. The R Journal, 2002, 2(3): 18.
[36] Hengl T, Heuvelink G B M, Kempen B, et al. PLOS ONE, 2015, 10(6): e0125814.
[37] McCray J M, Swanson S. EDIS, 2020, 2020(2): doi: 1032473/EDIS-AG441-2020.
[38] YAO Fu-qi, ZHANG Zhen-hua, YANG Run-ya, et al(姚付启,张振华,杨润亚, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2009, 25(S2): 123.
[39] YU Lei, HONG Yong-sheng, GENG Lei, et al(于 雷,洪永胜,耿 雷, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2015, 31(14): 103.
[40] LIU Chang, SUN Peng-sen, LIU Shi-rong(刘 畅,孙鹏森,刘世荣). Chinese Journal of Plant Ecology(植物生态学报), 2016, 40(1): 80.
[41] LIU Wei-dong, XIANG Yue-qin, ZHENG Lan-fen, et al(刘伟东,项月琴,郑兰芬, 等). National Remote Sensing Bulletin(遥感学报), 2000,4(4): 279.
[42] Shi T Z, Liu H Z, Wang J J, et al. Environmental Science & Technology, 2014, 48(11): 6264.
[43] Sharma Vishal, Chauhan Rohini, Kumar Raj. Microchemical Journal, 2021, 171: 106836.
[44] Masiello C A. Marine Chemistry, 2004, 92(1-4): 201.
[45] JI Wen-jun, SHI Zhou, ZHOU Qing, et al(纪文君,史 舟,周 清, 等). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2012, 31(3): 277.
[46] GOU Yu-xuan, ZHAO Yun-ze, LI Yong, et al(勾宇轩,赵云泽,李 勇, 等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2022, 53(3): 331.
[47] GONG Ming-chong, WANG Hong, ZHANG Lei, et al(龚明冲,汪 泓,张 磊, 等). Laser & Optoelectronics Progress, 2025, 62(3): 0330005.
[48] WANG Yan-cang, ZHANG Xiao-yu, JIN Yong-tao, et al(王延仓,张萧誉,金永涛, 等). Journal of Triticeae Crops(麦类作物学报), 2020, 40(4): 503.
[49] Sun X L, Wang H L, Zhao Y G, et al. Geoderma, 2017, 303: 118.
[50] Ordoñez J C, van Bodegom P M, Witte J P M, et al. Global Ecology and Biogeography, 2009, 18(2): 137.
[51] Gitelson A A, Gritz Y, Merzlyak M N. Journal of Plant Physiology, 2003, 160(3): 271.
[52] Sobrino J A, Jiménez-Muñoz J C, Paolini L. Remote Sensing of Environment, 2004, 90(4): 434.
[53] Li Z H, He W, Cheng M F, et al. Earth System Science Data, 2023, 15(11): 4749.
|
[1] |
GUO Hui1, 2, HAN Zi-wei1, 2*, WU Dou-qing1, 2. Estimation of Soil Organic Matter Content in Coal Mining Tensile
Fracture Area Based on Spectral Index[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(09): 2569-2577. |
[2] |
WANG Jia-ying1, ZHU Yu-ting1, BAI Hao1, CHEN Ke-ming1, ZHAO Yan-ru1, 2, 3, WU Ting-ting1, 2, 3, MA Guo-ming4, YU Ke-qiang1, 2, 3*. Detecting the Metal Elements and Soil Organic Matter in Farmland by Dual-Modality Spectral Technologies[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(08): 2317-2325. |
[3] |
LI Xu-sheng1, 2, 3, WANG Da-ming1, 2, 3*, WANG Fei-cui1, 2, 3, TONG Yun-xiao1, 2, 3, CAO Si-qi1, 2, 3. A Robust Characteristic Spectrum Construction Algorithm Based on
Spectral Domain Interpolation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(04): 1168-1174. |
[4] |
WU Meng-hong1, 2, DOU Sen1, LIN Nan2, JIANG Ran-zhe3, CHEN Si2, LI Jia-xuan2, FU Jia-wei2, MEI Xian-jun2. Hyperspectral Estimation of Soil Organic Matter Based on FOD-sCARS and Machine Learning Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(01): 204-212. |
[5] |
REN Ju-xiang1, LIU Zhong-bao2*. Research on Effectiveness of the Pre-Training Model in Improving the Performance of Spectral Feature Extraction[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(12): 3480-3484. |
[6] |
SUN Yu-tong1, 2, LÜ Shu-qiang1, 2, HOU Miao-le1, 2*. A Mixed Pigment Identification Method Based on Spectra Interval[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(08): 2357-2364. |
[7] |
WANG Hao-yu1, 2, 3, WEI Zi-yuan1, 2, 3, YANG Yong-xia1, 2, 3, HOU Jun-ying1, 2, 3, SUN Zhang-tong1, 2, 3, HU Jin1, 2, 3*. Estimation of Eggplant Leaf Nitrogen Content Based on Hyperspectral Imaging and Convolutional Auto-Encoders Networks[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(08): 2208-2215. |
[8] |
LI Hao1, YU Hao1, CAO Yong-yan1, HAO Zi-yuan1, 2, YANG Wei1, 2*, LI Min-zan1, 2. Hyperspectral Prediction of Soil Organic Matter Content Using
CARS-CNN Modelling[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(08): 2303-2309. |
[9] |
HU Jun1, LÜ Hao-hao1, QIAO Peng1, HE Yong2, LIU Yan-de1*. Research on Almond Plumpness Detection Method Based on Terahertz Imaging Technology and Feature Extraction Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(07): 1896-1904. |
[10] |
CAI Hai-hui1, ZHOU Ling2, SHI Zhou3, JI Wen-jun4, LUO De-fang1, PENG Jie1, FENG Chun-hui5*. Hyperspectral Inversion of Soil Organic Matter in Jujube Orchard
in Southern Xinjiang Using CARS-BPNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2568-2573. |
[11] |
XIA Chen-zhen1, 2, 3, JIANG Yan-yan4, ZHANG Xing-yu1, 2, 3, SHA Ye5, CUI Shuai1, 2, 3, MI Guo-hua5, GAO Qiang1, 2, 3, ZHANG Yue1, 2, 3*. Estimation of Soil Organic Matter in Maize Field of Black Soil Area Based on UAV Hyperspectral Image[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2617-2626. |
[12] |
ZHANG Hai-liang1, XIE Chao-yong1, TIAN Peng1, ZHAN Bai-shao1, CHEN Zai-liang1, LUO Wei1*, LIU Xue-mei2*. Measurement of Soil Organic Matter and Total Nitrogen Based on Visible/Near Infrared Spectroscopy and Data-Driven Machine Learning Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2226-2231. |
[13] |
FENG Ying-chao1, HUANG Yi-ming2*, LIU Jin-ping1, JIA Chen-peng2, CHEN Peng1, WU Shao-jie2*, REN Xu-kai3, YU Huan-wei3. On-Line Monitoring of Laser Wire Filling Welding Process Based on Emission Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1927-1935. |
[14] |
FENG Xin1, 2, FANG Chao1*, GONG Hai-feng2, LOU Xi-cheng1, PENG Ye1. Infrared and Visible Image Fusion Based on Two-Scale Decomposition and
Saliency Extraction[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 590-596. |
[15] |
WANG Zhi-xin, WANG Hui-hui, ZHANG Wen-bo, WANG Zhong, LI Yue-e*. Classification and Recognition of Lilies Based on Raman Spectroscopy and Machine Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 183-189. |
|
|
|
|