|
|
|
|
|
|
Application of In Situ Infrared Spectroscopy to the Research of Biomass
Conversion |
LU Si, CHEN Xiao-li, LIANG Zheng, WANG Xiao-man, SU Qiu-cheng, QI Wei, FU Juan* |
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
|
|
|
Abstract Biomass, as the most abundant bio-renewable resource on Earth, has been recognized as a potential energy source to replace fossil resources and mitigate global energy and environmental crises. As the sole renewable carbon source, biomass can be converted into high-value chemicals and energy-intensive biofuels through various catalytic methods and conversion pathways. In the process of biomass conversion, it is essential to analyze the structure and composition of reactants, intermediates, by products, and products for the study of reaction pathways and reaction mechanisms to improve conversion efficiency. Based on the principle of Fourier infrared spectroscopy, in situ infrared spectroscopy technology with high sensitivity and real-time capabilities is used to monitor online chemical reactions by assembling an in situ reaction tank. It is capable of obtaining the characteristic spectra of substances changing with the reaction conditions, and has a wide range of application prospects in the research of biomass conversion. In this paper, the application of in situ infrared spectroscopy in recent years to research biomass conversion is reviewed. The transformation mechanism of biomass is analyzed using in situ infrared spectroscopy, which includes transmission, diffuse reflection (DRIFTS), and attenuated total reflection (ATR) modes. A categorized review of various conversion strategies for the high-value utilization of biomass is presented, focusing on recent advances in in situ infrared spectroscopy in the study of pyrolysis, chemical catalysis, and electrocatalysis reaction mechanisms. The reaction process involves a variety of catalytic methods, including hydrolysis, hydrogenation, oxidation, reduction, and isomerization, among others. The reaction route, reaction mechanism, and reaction kinetics are studied in depth by tracking the changes in reactant structure and functional groups. It also summarizes the advantages and limitations of various testing modes in in situ infrared spectroscopy when applied to investigate the reaction mechanisms of pyrolysis, chemical catalysis, and electrocatalysis. Finally, addressing the current challenges and difficulties in applying in situ infrared spectroscopy to biomass conversion processes, this study proposes the future directions and potential of this technology. These include technical optimization of in situ reaction cells to enhance compatibility with extreme reaction conditions, as well as the development of multimodal coupling techniques, such as integrating in situ infrared spectroscopy with mass spectrometry and Raman spectroscopy. Such advancements are expected to provide deeper insights into biomass conversion mechanisms and foster more significant breakthroughs in this field.
|
Received: 2025-04-17
Accepted: 2025-07-11
|
|
Corresponding Authors:
FU Juan
E-mail: fujuan@ms.giec.ac.cn
|
|
[1] Yu S J, He J K, Zhang Z E, et al. Advanced Materials, 2024, 36(18): 2307412.
[2] Adeleke A A, Ikubanni P P, Emmanuel S S, et al. Renewable and Sustainable Energy Reviews, 2024, 199: 114502.
[3] Li G Y, Wang R, Pang J F, et al. Chemical Reviews, 2024, 124(6): 2889.
[4] Lei Y D, Wang Z L, Zhang X Y, et al. Environmental Research Letters, 2022, 17(9): 094041.
[5] Low Y W, Yee K F. Biomass and Bioenergy, 2021, 154: 106245.
[6] Ni Y, Zhao R X, Jiang M, et al. Separation and Purification Technology, 2024, 359(2): 130604.
[7] Aljammal N, Jabbour C, Thybaut J W, et al. Coordination Chemistry Reviews, 2019, 401: 213064.
[8] De S, Burange A S, Luque R. Green Chemistry, 2022, 24(6): 2267.
[9] Ren Z, Yang Y, Wang S, et al. ACS Catalysis, 2023, 13(8): 5665.
[10] Liu W, Liu C M, Gogoi P, et al. Engineering, 2020, 6(12): 1351.
[11] Usman M, Chen H H, Chen K F, et al. Green Chemistry, 2019, 21(7): 1553.
[12] Velidandi A, Gandam P K, Chinta M L, et al. Journal of Energy Chemistry, 2023, 81: 42.
[13] Cherniienko A, Lesyk R, Zaprutko L, et al. Journal of Pharmaceutical Analysis, 2024, 14(9): 100951.
[14] Topsøe N Y. Catalysis Today, 2006, 113: 58.
[15] Feng K, Wang Y N, Guo M, et al. Journal of Energy Chemistry, 2021, 62: 153.
[16] XIN Qin, LUO Meng-fei, XU Jie(辛 勤, 罗孟飞, 徐 杰). New Edition of Modern Catalytic Research Methods(Volume One)[现代催化研究方法新编(上册)]. Beijing: Science Press(北京:科学出版社), 2018: 413.
[17] Wang Z L, Liu Y, Hu L S, et al. Silicon, 2024, 16(5): 2195.
[18] ZHANG Qi, LU Shu-liang, PENG Hui(张 齐, 鲁树亮, 彭 晖). Natural Gas Chemical Industry(天然气化工), 2020, 45(6): 103.
[19] Cao Z M, Sun Y J, Dong F. ACS Sensors, 2024, 9(5): 2558.
[20] LIU Qian-qian, JI Sheng-fu, WU Ping-yi, et al(刘倩倩, 季生福, 吴平易,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2009, 29(5): 1227.
[21] Xu H M, Fan Z X, Zhu S Q, et al. Current Opinion in Electrochemistry, 2023, 41: 101363.
[22] Lin G H, Chen G, Lu J Y. Journal of Alloys and Compounds, 2025, 1010: 177552.
[23] Vuppaladadiyam A K, Vuppaladadiyam S S V, Awasthi A, et al. Bioresource Technology, 2022, 364: 128087.
[24] Xiong J Y, Zhang S M, Ke L Y, et al. Science of the Total Environment, 2023, 872: 162214.
[25] Qiu B B, Tao X D, Wang J H, et al. Energy Conversion and Management, 2022, 261: 115647.
[26] Osman A I, Farghali M, Ihara I, et al. Environmental Chemistry Letters, 2023, 21(3): 1419.
[27] Liu J P, Chen X, Chen W, et al. Proceedings of the Combustion Institute, 2023, 39(3): 3157.
[28] Zhang Y N, Liang Y Y, Li S Y, et al. Fuel, 2023, 347: 128461.
[29] Azizova L R, Kulik T V, Palianytsia B B, et al. Journal of the American Chemical Society, 2023, 145(49): 26592.
[30] Wang X X, Dai Y W, Zhang A L, et al. Journal of the Energy Institute, 2024, 117: 101775.
[31] Liu X C, Song H, Han K S, et al. Energy, 2023, 285: 128678.
[32] Sun C, Chen X J, Zheng D Y, et al. Green Chemistry, 2021, 23(22): 9014.
[33] Wang G Y, Dai G X, Ding S Q, et al. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105184.
[34] Dai G X, Wang G Y, Wang K G, et al. Proceedings of the Combustion Institute, 2021, 38(3): 4241.
[35] Liu R J, Liu G J, Yousaf B, et al. Renewable and Sustainable Energy Reviews, 2022, 153: 111761.
[36] Xie T, Huo L L, Yao Z L, et al. Chemical Engineering Journal, 2024, 482: 149166.
[37] Wang L, Fang Y, Yin J, et al. Science of the Total Environment, 2022, 838: 156395.
[38] Zhou S J, Yang Y S, Shen T Y, et al. ACS Applied Materials & Interfaces, 2024, 16(11): 13685.
[39] Feng H S, Liu W, Wang L, et al. Advanced Science, 2024, 11: 2304908.
[40] Huo J J, Shanks B H. Annual Review of Chemical and Biomolecular Engineering. 2020, 11(1): 63.
[41] Alonso D M, Wettstein S G, Mellmer M A, et al. Energy & Environmental Science, 2013, 6(1): 76.
[42] Wang J F, Lu X B, Guo M Y, et al. ChemSusChem, 2023, 16(24): e202301091.
[43] Yan P X, Wang H Y, Liao Y H, et al. Renewable and Sustainable Energy Reviews, 2023, 178: 113219.
[44] Shi J M, Gao G Y, Jin C, et al. EcoMat, 2024, 6(4): e12441.
[45] Liao C, He Z Z, Wang F, et al. ACS Nano, 2024, 18: 35480.
[46] Mamlouk H, Elumalai P, Kumar M P, et al. ACS Applied Materials & Interfaces, 2020, 12(2): 3171.
[47] Zhu S Q, Li T H, Cai W B, et al. ACS Energy Letters, 2019, 4(3): 682.
[48] Kumar A, Chauhan A S, Bains R, et al. Green Chemistry, 2023, 25(3): 849.
[49] Qiu B B, Hu W, Zhang D H, et al. Fuel, 2024, 375: 132568.
[50] Dong L, Morales-Vidal J, Mu L L, et al. Applied Catalysis B: Environmental, 2023, 335: 122893.
[51] Yu Z D, Qin Z H, Liu H Y, et al. Journal of Catalysis, 2024, 440: 115844.
[52] Zhang W M, Feng K W, Hu R G, et al. Chem, 2023, 9(2): 430.
[53] Wang Y T, Xiao N, Zhang F Z, et al. Energy Conversion and Management, 2025, 325: 119359.
[54] Yan H, Liu B W, Zhou, X, et al. Nature Communications, 2023, 14(1): 4509.
[55] Yan H, Zhao M Y, Feng X, et al. Angewandte Chemie International Edition, 2022, 61: e202116059.
[56] Butburee T, Prasert A, Rungtaweevoranit B, et al. Small, 2024, 20(44): 2403661.
[57] Ding J, Wu Y H, Wu S R, et al. Journal of Membrane Science, 2025, 719: 123765.
[58] Shi J H, Cui Y Z, Sun H, et al. Chemical Engineering Journal, 2023, 466: 143317.
[59] Wang H, Cui Y Z, Shi J H, et al. Applied Catalysis B: Environmental, 2023, 330: 122457.
[60] Li Y Y, Wang R N, Huang B W, et al. Applied Surface Science, 2022, 604: 154579.
[61] Wang Q, Feng J T, Zheng L R, et al. ACS Catalysis, 2020, 10(2): 1353.
[62] Zhou K, Chen J X, Cheng Y J, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(44): 16624.
[63] Peng Y, Xu Z W, Yu L, et al. Chemical Engineering Journal, 2023, 454: 139746.
[64] Zhuang X Z, Liu J G, Zhong S R, et al. Green Chemistry, 2022, 24(1): 271.
[65] Xue Z, Wu S S, Fu Y J, et al. Journal of Energy Chemistry, 2023, 76: 239.
[66] Xu M, Liu X L, Xiong Z, et al. Molecular Catalysis, 2025, 572: 114740.
[67] Huang J S, Li H, Saravanamurugan S, et al. Angewandte Chemie International Edition, 2024, 63(50): e202411544.
[68] Ye X, Shi X Y, Li J Y, et al. Chemical Engineering Journal, 2022, 440: 135844.
[69] Sun P Y, Wang H Y, Wang H, et al. Angewandte Chemie International Edition, 2024, 63: e202318750.
[70] Geng W J, Zhang D, Zhen N, et al. ACS Catalysis, 2024, 14(13): 10040.
[71] Deng L F, Yuan H R, Qian X, et al. Resources, Conservation and Recycling, 2022, 177: 105980.
[72] Li X X, Cong L C, Lin N, et al. Journal of Materials Chemistry A, 2023, 11(43): 23133.
[73] Wang K P, Li Z, Guo Z Y, et al. Green Chemistry, 2024, 26(5): 2454.
[74] Li J T, Zhou Z Y, Broadwell I, et al. Accounts of Chemical Research, 2012, 45(4): 485.
[75] Zhang Y R, Katayama Y, Tatara R, et al. Energy & Environmental Science, 2020, 13(1): 183.
[76] Luo L, Xu L, Wang Q Y, et al. Advanced Energy Materials, 2023, 13(36): 2301276.
[77] Yan Y F, Zhou H, Xu S M, et al. Journal of the American Chemical Society, 2023, 145(11): 6144.
[78] Chen W, Zhang L, Xu L T, et al. Nature Communications, 2024, 15(1): 2420.
[79] Lee D K, Kubota S R, Janes A N, et al. ChemSusChem, 2021, 14(20): 4563.
[80] Wu J C, Xu L T, Kong Z J, et al. Angewandte Chemie International Edition, 2023, 63: e202311196.
[81] Zhang M, Xu S J, Boubeche M, et al. Green Chemistry, 2022, 24(24): 9570.
[82] Sun P Y, Liu C, Wang H Y, et al. Angewandte Chemie International Edition, 2023, 62(6): e202215737.
[83] Mamaghani Z G, Hawboldt K A, MacQuarrie S. Journal of Environmental Chemical Engineering, 2023, 11(3): 109643.
[84] Li K, Zhang D Q, Niu X J, et al. Separation and Purification Technology, 2023, 315: 123538.
[85] Qu Z X, Zhang X X, Huang R L, et al. Nano Letters, 2022, 22(10): 4115. |
[1] |
LU Si, CHEN Xiao-li, SU Qiu-cheng, QI Wei, XIA Sheng-peng, LI Ming, FU Juan*. The Study of Experimental Method on the Characterization of Acidic Properties of Zeolites by in Situ FTIR-Pyridine Adsorption[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2488-2493. |
[2] |
GUO Ge1, 3, 4, ZHANG Meng-ling3, 4, GONG Zhi-jie3, 4, ZHANG Shi-zhuang3, 4, WANG Xiao-yu2, 5, 6*, ZHOU Zhong-hua1*, YANG Yu2, 5, 6, XIE Guang-hui3, 4. Construction of Biomass Ash Content Model Based on Near-Infrared
Spectroscopy and Complex Sample Set Partitioning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3143-3149. |
[3] |
ZHU Zi-min, XING Jian*. Research on Inversion Algorithm of Multispectral Radiation Temperature Measurement Based on Bisection Iterative Recursion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2674-2678. |
[4] |
XING Jian1, MA Zhao2, BAI Yan1*. Multi Spectral Radiation External Penalty Function Inversion Algorithm for Flame Temperature Measurement of Biomass Boiler[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3761-3764. |
[5] |
KAN Yu-na, CHEN Bing-wei, ZHAI Sheng-cheng*, MEI Chang-tong. Chemical Compositions of Carbon Sources Affected on Surface Morphology and Spectral Properties of the Synthetic Carbon Microspheres[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 3153-3160. |
[6] |
HAO Hua-hua1,2, YUAN Hui1,2, XU Guang-tong1,2*, XIANG Yan-juan1,2, MA Ai-zeng1,2. In Situ FTIR Study of CO Adsorption on Pt-Sn/Al2O3 Reforming Catalyst[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 761-764. |
[7] |
ZHANG Hao1,2 . Study on Preparation Mechanism and Property of Biomass Environmental Coordination Function Material with Fourier Transform Infrared Spectrum [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(02): 412-415. |
[8] |
PAN Meng-li, PING Qing-wei*, ZHANG Jian, LI Na . Rapid Method for Determination of Furfural and 5-Hydroxymethyl Furfural of Ethanol-Water Hydrolysate of Biomass with UV Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(01): 146-149. |
[9] |
WANG Yue-ying, Lü Yi-zhong* . Effect of Acid Elution on the Surface Structure Characteristics and Spectral Characteristics of Biochars[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(10): 3292-3296. |
[10] |
MA Xing-zhu1, 2, HAO Xiao-yu1, 2, CHEN Xue-li2, GAO Zhong-chao2, WEI Dan2, ZHOU Bao-ku2*. Study on Biochar Properties Analysis with Scanning Electron Microscope-EnergyDispersive X-Ray Spectroscopy (SEM-EDX)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(06): 1670-1673. |
[11] |
FU Juan1,2,5, WU Neng-you2,4, LU Hai-long3, WU Dai-dai2*, SU Qiu-cheng2 . Laser Raman Spectroscopy and Its Application in Gas Hydrate Studies [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(11): 2996-3002. |
[12] |
YU Chao1, 2, CHEN Liang-fu1*, LI Shen-shen1, TAO Jin-hua1, SU Lin1 . Estimating Biomass Burned Areas from Multispectral Dataset Detected by Multiple-Satellite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(03): 739-745. |
[13] |
XU Dong-yu, JIN Jie, YAN Yu, HAN Lan-fang, KANG Ming-jie, WANG Zi-ying, ZHAO Ye, SUN Ke* . Characterization of Biochar by X-Ray Photoelectron Spectroscopy and 13C Nuclear Magnetic Resonance[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(12): 3415-3418. |
[14] |
ZHANG Xin1,2, HE An-qi2, KANG Ting-guo1*, XIA Jin-ming3, WENG Shi-fu2, XU Yi-zhuang2*, WU Jin-guang2 . Studies on Carbonization of Saccharides by Using Aqueous Solution of Various Acids[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(09): 2346-2350. |
[15] |
LIU Xiao-huan1, ZHANG Ming-ming1, WANG Ji-fu1, XU Yu-zhi1*, WANG Chun-peng1, 2, CHU Fu-xiang1, 2* . Chemical Structure of Bioethanol Lignin by Low-Temperature Alkaline Catalytic Hydrothermal Treatment [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(11): 2940-2944. |
|
|
|
|