|
|
|
|
|
|
Study on Rapid Antimicrobial Susceptibility Test of Pseudomonas Aeruginosa by D2O-Labeled Single-Cell Raman Spectroscopy |
WANG Feng-chan1, NIU Lu1, YE Hai-yan1, FU Xiao-ting2, DAI Jing2, LI Yuan-dong2, HU Hai-bo1, LU Xue-chao1* |
1. Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, China
2. Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
|
|
|
Abstract Pseudomonas aeruginosa is one of the important pathogens causing clinical pneumonia. The rapid spread of antibiotic resistance threatens our fight against bacterial infections. However, the culture-based broth microdilution method (BMD) is the gold standard method for in vitro antimicrobial susceptibility tests (ASTs), which seriously affects the therapeutic effect of patients due to longer detection time. Single-cell Raman spectroscopy (SCRS) is label-free, culture-free, rapid, accurate and low-cost. Here we research the AST of Pseudomonas aeruginosa using the Clinical Antimicrobials Susceptibility Test Ramanometry (CAST-R), based on D2O-probed Raman spectroscopy. We selected three antibiotics (Meropenem, Ceftazidime and Cefepime) and three Pseudomonas aeruginosa strains to carry out the AST. CAST-R results show 100% essential agreement and 88.9% categorical agreement with BMD methods, and it can achieve the AST results within 4h. The speed, reliability, and general applicability of CAST-R suggest its potential utility for guiding the clinical administration of antimicrobials.
|
Received: 2024-11-26
Accepted: 2025-04-16
|
|
Corresponding Authors:
LU Xue-chao
E-mail: hospitalbreathing@163.com
|
|
[1] Andrejko M, Zdybicka-Barabas A, Janczarek M, et al. Acta Biochimica Polonica, 2013, 60(1): 83.
[2] 2021National Bacterial Drug Resistance Monitoring Report (Abbreviated Edition)[2021年全国细菌耐药监测报告(简要版)]. China Antimicrobial Resistance Surveillance System(全国细菌耐药监测网), 2023年1月10日, http://www.carss.cn/Report/Details?aId=862.
[3] Reller L B, Weinstein M, Jorgensen J H, et al. Clinical Infectious Diseases, 2009, 49(11): 1749.
[4] Balouiri M, Sadiki M, Ibnsouda S K. Journal of Pharmaceutical Analysis, 2016, 6(2): 71.
[5] Li M, Xu J, Romero-Gonzalez M, et al. Current Opinion in Biotechnology, 2012, 23(1): 56.
[6] Huang W E, Griffiths R I, Thompson I P, et al. Analytical Chemistry, 2004, 76(15): 4452.
[7] Lu W, Li H, Qiu H, et al. Frontiers in Microbiology, 2023, 13: 1076965.
[8] Petry R, Schmitt M, Popp J. Chemphyschem, 2003, 4(1): 14.
[9] Montanari L B, Sartori F G, Ribeiro D B M, et al. Journal of Water and Health, 2018, 16(2): 311.
[10] Tao Y, Wang Y, Huang S, et al. Analytical Chemistry, 2017, 89(7): 4108.
[11] Hong W, Karanja C W, Abutaleb N S, et al. Analytical Chemistry, 2018, 90(6): 3737.
[12] Yang K, Li H Z, Zhu X, et al. Analytical Chemistry, 2019, 91(9): 6296.
[13] Bauer D, Wieland K, Qiu L, et al. Analytical Chemistry, 2020, 92(13): 8722.
[14] Zhang M, Hong W, Abutaleb N S, et al. Advanced Science, 2020, 7(19): 2001452.
[15] Yi X, Song Y, Xu X, et al. Analytical Chemistry, 2021, 93(12): 5098.
[16] Berry D, Mader E, Lee T K, et al. Proceedings of the National Academy of Sciences, 2015, 112(2): E194.
[17] Zhu P, Ren L, Zhu Y, et al. mLife, 2022, 1(3): 329.
[18] Li H Z, Zhang D D, Yang K, et al. Analytical Chemistry, 2020, 92(23): 15472.
[19] Wayne P A. CLSI Supplement Document M100-S30CLSI; CLSI, 2020.
[20] RUAN Zhen, ZHU Peng-fei, ZHANG Lei, et al(阮 真, 朱鹏飞, 张 磊, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(11): 3468.
|
[1] |
CHEN Xin-gang1, 2, AO Yi1, ZHANG Zhi-xian1*, MA Zhi-peng1, ZHANG Wen-xuan1, WAN Fu3, KUANG Lu1, LUO Bo-wen1. Raman Spectroscopic Detection of the Aging State of Oil-Paper Insulation in Combined Diffusion-Based WGANGP Transformers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(08): 2164-2173. |
[2] |
WANG Shu-dong1*, ZHENG Xuan1, TIAN Ren-kui2 , ZHANG Yan1*, WU Jing-jie1*. Identification and Raman Spectroscopy Characteristics Analysis of the New Psychoactive Substances Etomidate and Its Analogs[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(08): 2241-2246. |
[3] |
XU Qing1, TANG Jia-wei2, LIU Xue-meng3, GUO Jing-xing4, ZHU Li-jun1, ZHOU Qing-qing1, WANG Liang2, LU Guang-ming1*. Diagnostic Method for Brain Glioma Grading Based on Convolutional Neural Networks and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(08): 2247-2252. |
[4] |
WU Shu-lei1, 2, ZHANG Jia-tian1, 2, WANG Jia-jun2, DANG Shi-jie2, ZHAO Ling-xiao2, CHEN Yi-bo2*. Pathogenic Bacteria Raman Spectrum Classification Method Based on
Diffusion Kernel Attention[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(07): 1940-1945. |
[5] |
JIANG Yi1, PAN Jiao1, DUAN Hong-ying2*. The Scientific Analysis of Materials of Polychrome Paintings From
Northeast Chonglou of the Forbidden City[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(07): 1953-1960. |
[6] |
XU De-fang1, GUAN Hong-pu2, ZHAO Hua-min3, ZHANG Shu-juan3, ZHAO Yan-ru2*. Early Detection Method of Mechanical Damage of Yuluxiang Pear Based on SERS and Deep Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(06): 1712-1718. |
[7] |
LI Wen1, LUO Cheng-kui1*, CHEN Shi-heng2*, JIN Hao-shu2, LI Jie1, LI Yi-bo1. Rapid Quantitative Analysis of Acidic Ions in In-Situ Leaching Solution Using Cavity-Enhanced Raman Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(06): 1744-1751. |
[8] |
GAO Fei1, 2, LIN Wan1, JIA Zhe1, BAI Qi-hui1, LIU Jing1, WANG Yi-fan1, LI Wei-ying3. Spectroscopic Study on the Evolution of Coal Molecular Structure During CO2 Storage[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(06): 1791-1800. |
[9] |
JIANG Heng1, LÜ Zi-wei1, LI Yang2, DONG Tuo1*. A Novel Strategy for Viral Detection in Acute Respiratory Infections: Combining SERS With Machine Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(05): 1217-1224. |
[10] |
GUAN Li-chang1, 2, FENG Lei2, 3, ZHAO Nan1*, JIANG Xue-mei2*. Study of Fenfluramine Molecule Based on the Density Functional Theory[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(05): 1270-1276. |
[11] |
ZHOU Wei-qiang1, LIU Ning1, HE Jing2, CHEN Hui-li3, LEI Yu3, RUAN Fang-hong3, HOU Jing-min4. Analysis and Research on Polychrome Pigments for the Statues of Yuanjue Cave, Anyue Grottoes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(05): 1373-1382. |
[12] |
ZHANG Wen-jie1, ZHANG Yu2, CAO Zhen-wei3, HAN Xiang-na1*, GUO Hong1. Analysis of Pigments of Ming Dynasty Polychrome Paintings Composition in the Juehuang Hall of the Mingjiao Temple[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(05): 1389-1394. |
[13] |
CHEN Xin-gang1, 2, ZHANG Wen-xuan1, MA Zhi-peng1*, ZHANG Zhi-xian1, WAN Fu3, AO Yi1, ZENG Hui-min1. Improved Convolutional Neural Network Quantification of Mixed Fault Characterization Gases in Transformers Based on Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(04): 932-940. |
[14] |
YANG Bo, ZHANG Ya-ru, CHENG Bi-yao, LI Yu-wei, QU Peng-fei, TANG Hui, LIU Hai-bin, WANG Xiao-zhuo*. Investigation of Hydrogen Bonding in Aqueous Nitric Acid Solution Under Concentration Perturbation by Two-Dimensional Correlated Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(04): 958-963. |
[15] |
ZHANG Wen-jie1, GAO Shan2, CAO Zhen-wei3, HAN Xiang-na1*. Analysis of Pigments of Polychrome Paintings From the Baoguang Hall of Prince Kung's Palace Museum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(04): 1028-1035. |
|
|
|
|