|
|
|
|
|
|
Study on Spectroscopy and Locality Characteristics of the Tremolite Jade in Hanyaozi Grassland |
YU Xuan1, LIU Ji-fu1, YANG Ming-xing1, 2* |
1. Gemmological Institute, China University of Geosciences (Wuhan), Wuhan 430074, China
2. China University of Geosciences (Wuhan) Jewelry Testing Center, Wuhan 430074, China
|
|
|
Abstract The Hanyaozi Grassland Jade Mine site was excavated and surveyed in 2014, yielding pottery shards, stone tools, and jade materials, which possess significant gemological and archaeological value. To enrich the database of Chinese nephrite and provide more accurate data support for future studies on the analysis of unearthed jade artifacts, this paper takes 38 pieces of tremolite jade collected in Hanyaozi grassland as the research object. Conventional gemological tests, as well as infrared and Raman spectroscopy, were conducted on the samples. Infrared and Raman spectroscopy instruments can rapidly determine the samples' chemical composition and impurity minerals. The results indicate that the samples are standard tremolite, with impurity minerals including sphene and amorphous carbon. Qualitative and quantitative analyses of the samples' major and trace elements were conducted using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). The samples' rare earth element (REE) data were standardized using reported data from chondritic meteorites, resulting in a series of parameters. The ∑REE values ranged from 0.40 to 14.28, with a mean of 3.46, indicating an overall low abundance of rare earth elements. The LREE/HREE values ranged from 0.21 to 17.91, with a mean of 2.69, suggesting a slight enrichment of light rare earth elements. The REE distribution pattern exhibited a relatively flat “seagull-shaped” trend. The δEu values ranged from 0 to 3.3, with a mean of 0.58, indicating a negative Eu anomaly. Ce showed no significant anomalies. The tremolite jade from Hanjiaozi exhibited characteristic differences in REE distribution patterns compared to tremolite jade from other origins. Combining the spiderweb diagrams of trace elements of tremolite jade from the northwest mining area can further differentiate them. The uranium enrichment level (U) in Hanyaozi tremolite jade is significantly higher than in other origins. Finally, employing discriminant analysis methods in SPSS software, the trace elements of the tremolite jade in the northwest mining area were used to establish a discriminant model of origin. The results demonstrated a 100% accuracy rate in discrimination, with cross-validation rates of 98.3% respectively, affirming the distinctiveness of Hanyaozi Grassland tremolite jade from other origins. The established origin discrimination model can be utilized in subsequent provenance studies of unearthed jade artifacts.
|
Received: 2024-03-20
Accepted: 2024-09-06
|
|
Corresponding Authors:
YANG Ming-xing
E-mail: yangc@cug.edu.cn
|
|
[1] CHEN Guo-ke, YANG Yi-shi(陈国科, 杨谊时). Dunhuang Research(敦煌研究),2021,(5): 85.
[2] CHEN Guo-ke, JIANG Chao-nian, WANG Hui, et al(陈国科, 蒋超年, 王 辉, 等). Archaeology(考古) 2015,(7): 3.
[3] CHEN Guo-ke, QIU Zhi-li, JIANG Chao-nian, et al(陈国科, 丘志力, 蒋超年, 等). Archaeology and Cultural Relics(考古与文物),2019,(4): 12.
[4] NONG Pei-zhen, ZHOU Zheng-yu, LAI Meng, et al(农佩臻, 周征宇, 赖 萌, 等). Acta Mineralogica Sinica(矿物学报),2019, 39(3): 327.
[5] ZHANG Yu-yan, QIU Zhi-li, YANG Jiang-nan, et al(张钰岩, 丘志力, 杨江南, 等). Acta Scientiarum Naturalium Universitatis Sunyatseni[中山大学学报(自然科学版)] 2018, 57(2): 1.
[6] CHENG Jun, WANG Chang-sui, LI De-wen, et al(程 军, 王昌燧, 李德文, 等). Archaeology(考古),2005,(7): 70.
[7] XU Lin-shu, WANG Yu-ning, ZHOU Zheng-yu(徐琳抒, 王蔚宁, 周征宇). Journal of Tongji University(Natural Science)[同济大学学报(自然科学版)],2022, 50(8): 1101.
[8] LI Kun, SHEN Xiao-ping(李 坤, 申晓萍). Bulletin of Mineralogy, Petrology and Geochemistry(矿物岩石地球化学通报) 2019, 38(2): 405.
[9] ZOU Tian-ren, GUO Li-he, LI Wei-hua, et al(邹天人, 郭立鹤, 李维华, 等). Acta Petrologica et Mineralogica(岩石矿物学杂志),2002(S1): 72.
[10] LIU Xi-feng, JIA Yu-heng, LIU Yan(刘喜锋, 贾玉衡, 刘 琰). Rock and Mineral Analysis(岩矿测试),2019, 38(3): 316.
[11] AI Hao, CHEN Tao, ZHANG Li-juan, et al(艾 昊, 陈 涛, 张丽娟, 等). Acta Petrologica et Mineralogica(岩石矿物学杂志),2011, 30(2): 313.
[12] Tamor M A, Vassell W C. Journal of Applied Physics, 1994, 76(6): 3823.
[13] YU Hai-yan, YANG Xiao-wen(于海燕, 杨晓文). Journal of Guilin University of Technology(桂林理工大学学报),2019, 39(2): 311.
[14] Liu Yan, Deng Jun, Shi Guanghai, et al. Journal of Asian Earth Sciences, 2011, 42(3): 440.
[15] LING Xiao-xiao, WANG Shi-qi(凌潇潇, 王时麒). Chemical Composition and Color of Lilac Gray Tremolite Jade From Qinghai Province(青海烟紫色透闪石玉的化学成分和致色机理研究). Proceedings of International Symposium on Jade(玉石学国际学术研讨会), 北京, 2012.
[16] LING Xiao-xiao, WU Rui-hua, WANG Shi-qi, et al(凌潇潇, 吴瑞华, 王时麒, 等). A Study on Coloration Mechanism of Qinghai Green Nephrite by LA-ICP-MS(青海绿色透闪石玉的LA-ICP-MS分析及致色机理研究). China Jewelry Academic Exchange Conference,2009(2009中国珠宝首饰学术交流会), 北京, 2009.
[17] ZHANG Ya-dong, YANG Rui-dong, GAO Jun-bo, et al(张亚东, 杨瑞东, 高军波, 等). Acta Mineralogica Sinica(矿物学报),2015, 35(1): 56.
[18] ZHI Ying-xue, LIAO Guan-lin, CHEN Qiong, et al(支颖雪, 廖冠琳, 陈 琼, 等). Journal of Gems & Gemmology(宝石和宝石学杂志),2011, 13(4): 7.
[19] WANG Shi-qi, ZHAO Chao-hong, YU Guang, et al(王时麒, 赵朝洪, 于 洸, 等). Xiu Yan Jades in China(中国岫岩玉). Beijing: Science Press(北京: 科学出版社), 2007. 36.
[20] LI Jing, GAO Jie, TONG Xin-ran, et al(李 晶, 高 洁, 童欣然, 等). Journal of Gems & Gemmology(宝石和宝石学杂志),2010, 12(3): 19.
[21] JIANG Cui, PENG Fan, WANG Wen-wei, et al(江 翠, 彭 帆, 王文薇, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析) 2021, 41(4): 1294.
[22] YU Hai-yan, JIA Zong-yong, LEI Wei(于海燕, 贾宗勇, 雷 威). Modern Mining(现代矿业),2019, 35(3): 13.
[23] ZHONG You-ping, QIU Zhi-li, LI Liu-fen, et al(钟友萍, 丘志力, 李榴芬, 等). Journal of the Chinese Society of Rare Earths(中国稀土学报),2013, 31(6): 738.
[24] WANG Shi-qi, YUAN Xue-mei(王时麒, 员雪梅). Journal of Gems & Gemmology(宝石和宝石学杂志),2008,(3): 4.
|
[1] |
HOU Chao-xin, QU Xin-yue, XIA Su-qin, HAN Hao-chang, WANG Yu-long, ZHANG Hao, LAI Xiao-jing*. Fluorescent Spectroscopic Features of “Trapiche-Like” Sapphire From Mingxi,Fujian Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(04): 1103-1108. |
[2] |
HAN Yan1, 5, DU Zeng-feng1, TIAN Ye3, LU Yuan3, SHI Xue-fa2, 4, LUAN Zhen-dong1, 5, YU Miao4, ZHANG Xin1, 2, 5*. Study on the Leaching and LIBS Spectral Detection Method of Rare Earth Elements in Deep-Sea Sediments[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 469-475. |
[3] |
FANG Ao, YIN Yong*, YU Hui-chun, YUAN Yun-xia. Hyperspectral Method for Tracing the Origin of Hawthorn Using the Weighted Combination Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 584-590. |
[4] |
TAO Long-feng1, 2, 3, HAO Nan-nan4, JIN Cui-ling2, 3, SHI Miao2, 3, HAN Xiu-li1*. Mineralogical and Spectroscopy Characteristics of the Nephrite in
Yeniugou, Qinghai[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3165-3171. |
[5] |
YE Xu1, 2, YANG Jiong2, 3*, QIU Zhi-li1, 2, YUE Zi-long1. An Exploration of Geographic Determination of Serpentine Jade by
Raman Spectroscopy Combined With Principal Component
Analysis and Linear Discriminant Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2551-2558. |
[6] |
YU Lian-gang1, ZHENG Jin-yu2. Study on Mineral Composition and Spectroscopy Characteristics of
“African Dulong Jade”[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1676-1683. |
[7] |
CAO Qin-yuan1, SHI Miao2, 3, 4*, MA Shi-yu2. Spectral Characteristics and Analysis of Main and Trace Elements of Scheelite From Xuebaoding[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1689-1696. |
[8] |
GU Yi-lu1, 2,PEI Jing-cheng1, 2*,ZHANG Yu-hui1, 2,YIN Xi-yan1, 2,YU Min-da1, 2, LAI Xiao-jing1, 2. Gemological and Spectral Characterization of Yellowish Green Apatite From Mexico[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 181-187. |
[9] |
HE Yan1, TAO Ran1, YANG Ming-xing1, 2*. The Spectral and Technology Studies of Faience Beads Unearthed in Hubei Province During Warring States Period[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3700-3709. |
[10] |
ZHANG Shu-fang1, LEI Lei2, LEI Shun-xin2, TAN Xue-cai1, LIU Shao-gang1, YAN Jun1*. Traceability of Geographical Origin of Jasmine Based on Near
Infrared Diffuse Reflectance Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3389-3395. |
[11] |
WANG Wei-en. Analysis of Trace Elements in Ophiocordyceps Sinensis From
Different Habitats[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3247-3251. |
[12] |
TAO Long-feng1, 2, LIU Chang-jiang2, LIU Shu-hong3, SHI Miao2, HAN Xiu-li1*. Preparation and Spectral Characteristics of Mn2+ Doped Nephrite Tailings Glass[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2710-2714. |
[13] |
WANG Yan1, HUANG Yi1, 2*, YANG Fan1, 2*, WU Zhong-wei2, 3, GUAN Yao4, XUE Fei1. The Origin and Geochemical Characteristics of the Hydrothermal Sediments From the 49.2°E—50.5°E Hydrothermal Fields of the Southwest Indian Ocean Ultra-Slow Spreading Ridge[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2868-2875. |
[14] |
YU Lian-gang1, LIU Xian-yu2*, CHEN Quan-li3. Gemstone Mineralogical and Spectroscopic Characteristics of
Quartzose Jade (“Mianlv Yu”)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2543-2549. |
[15] |
CHEN Chao-yang1, 2, LIU Cui-hong1, 2, LI Zhi-bin3, Andy Hsitien Shen1, 2*. Alexandrite Effect Origin of Gem Grade Diaspore[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2557-2562. |
|
|
|
|