光谱学与光谱分析 |
|
|
|
|
|
Evaluation of Total Suspended Matter Based on Spectral Classification |
LI Yuan, LI Yun-mei*, SHI Kun, Lü Heng, GUO Yu-long, ZHOU Li, LIU Ge |
Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing 210023, China |
|
|
Abstract Total suspended matter concentration is one of the important parameters of water component. Traditional retrieval model ignored the difference of case 2 water which has complex optical properties. In the present study, we developed a method of water classification based on optical classification using HJ-1 multispectral data. We divided the water into two types and developed a retrieval model suitable for different water type. The results indicate: (1) the accuracy of retrieved results based on spectral classification has been improved; (2) exponential model reflects the relationship between suspended sediment concentration and retrieved factor and is better for type Ⅰ water, while linear model is better for type Ⅱ water.
|
Received: 2012-12-27
Accepted: 2013-03-10
|
|
Corresponding Authors:
LI Yun-mei
E-mail: liyunmei@njnu.edu.cn
|
|
[1] SUN De-yong, LI Yun-mei, WANG Qiao, et al(孙德勇, 李云梅, 王 桥, 等). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2009, 28(2): 124. [2] Lu Heng. Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 2004. [3] MA Rong-hua, DAI Jin-fang(马荣华, 戴锦芳). Journal of Lake Sciences(湖泊科学), 2005, 17(2): 97. [4] Wei Y C, Huang J Z, Li X W, et al. Proc SPIE, 2005, 6199. [5] Miller R, Liu C C, Buonassissi C J, et al. Remote Sensing, 2011, 3(5): 962. [6] Hu C, Chen Z, Clayton T D, et al. Remote Sensing of Environment, 2004, 93(3): 423. [7] Sipelgas L, Raudsepp U, Kouts T. Advances in Space Research, 2006, 38(10): 2182. [8] Miller R L, McKee B A. Remote Sensing of Environment, 2004, 93(1-2): 259. [9] Ondrusek M, Stengel E, Kinkade C, et al. Remote Sensing of Environment, 2012, 119: 243. [10] Yan Z Z, Tang D L. Advances in Space Research, 2009, 43(1): 89. [11] PENG Ding-zhi, XIONG Li-hua, GUO Sheng-lian, et al(彭定志, 熊立华, 郭生练, 等). Advances in Water Science(水科学进展), 2004, 15(5): 683. [12] ZHU Ling-ya, WANG Shi-xin, ZHOU Yi, et al(祝令亚, 王世新, 周 艺, 等). Advances in Water Science(水科学进展), 2007, 18(3): 444. [13] Le C F, Li Y M, Zha Y, et al. Hydrobiologia, 2009, 619(1): 27. [14] Vermote E F, Tanre D, Deuze J L, et al. IEEE Transactions of Geoscience and Remote Sensing, 1997, 35(3): 675. [15] Li Y M, Wang, Q, Wu C Q, et al. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3): 988. [16] CHEN Yun, DAI Jin-fang(陈 云, 戴锦芳). Journal of Lake Sciences(湖泊科学), 2008, 20(2): 179. [17] SUN De-yong, LI Yun-mei, LE Cheng-feng, et al(孙德勇, 李云梅, 乐成峰, 等). Environmental Science(环境科学), 2007, 28(12): 2688. [18] GUANG Jie, WEI Yu-chun, HUANG Jia-zhu, et al(光 洁, 韦玉春, 黄家柱, 等). Journal of Lake Sciences(湖泊科学), 2007, 19(3): 241. [19] Zhou W, Wang S, Zhou Y, et al. International Journal of Remote Sensing, 2006, 27(6): 1177. [20] Le C F, Hu C, English D, et al. Progress in Oceanography, 2012, http://dx.doi.org/10.1016/j.pocean.2012.10.002. [21] QIN Bo-qiang, HU Wei-min, CHEN Wei-min(秦伯强, 胡伟民, 陈伟民). Taihu Lake Water Environment Evolution Mechanism(太湖水环境演化过程与机理). Beijing: Beijing Press(北京: 北京出版社), 2004. [22] DAI Yong-ning, LI Su-ju, WANG Xue-jun(戴永宁, 李素菊, 王学军). Research of Environmental Sciences(环境科学研究), 2008, 21(5): 173.
|
[1] |
LU Ya-kun1, QIU Bo1*, LUO A-li2, GUO Xiao-yu1, WANG Lin-qian1, CAO Guan-long1, BAI Zhong-rui2, CHEN Jian-jun2. Classification of 2D Stellar Spectra Based on FFCNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1881-1885. |
[2] |
LIU Zhong-bao1, WANG Jie2*. Research on the Improvement of Spectra Classification Performance With the High-Performance Hybrid Deep Learning Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 699-703. |
[3] |
LI Yu-yang1, 2, GUO Yan-ni2, ZHU Jun-yu2, ZHOU Lei2, 3, ZHOU Yong-qiang2, 3, HU Chun-hua1*. Characterizing Chromophoric Dissolved Organic Matter (CDOM) in Lake Chaohu in Different Hydrologic Seasons[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3286-3293. |
[4] |
LI Ling-qiao1,2, LI Yan-hui2, YIN Lin-lin4, YANG Hui-hua1,2*, FENG Yan-chun3, YIN Li-hui3, HU Chang-qin3. Data Augmentation of Raman Spectral and Its Application Research Based on DCGAN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 400-407. |
[5] |
HE Jin-xin1, REN Xiao-yu1, CHEN Sheng-bo2*, XIONG Yue1, XIAO Zhi-qiang1, ZHOU Hai1. Automatic Classification of Rock Spectral Features Based on Fusion Learning Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(01): 141-144. |
[6] |
JIANG Ling-ling1*, DUAN Jia-hui1, WANG Lin2, CHEN Yan-long2, GAO Si-wen1, GUO Xiang-yu1. The Influence of Suspended Particles on Backscattering Properties in the Coastal Waters of Bohai Sea[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(01): 156-163. |
[7] |
JIANG Bin, ZHAO Zi-liang, WANG Shu-ting, WEI Ji-yu, QU Mei-xia*. Decomposition and Classification of Stellar Spectra Based on t-SNE[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(09): 2913-2917. |
[8] |
PANG Shu-na1, ZHU Wei-ning1*, CHEN Jiang2, SUN Nan3, HUANG Li-tong1, ZHANG Yu-sen1, ZHANG Ze-liang1. Using Landsat-8 to Remotely Estimate and Observe Spatio-Temporal Variations of Total Suspended Matter in Zhoushan Coastal Regions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(12): 3826-3832. |
[9] |
ZHANG Xiao1,2, LUO A-li1*. XGBOOST Based Stellar Spectral Classification and Quantized Feature[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(10): 3292-3296. |
[10] |
WANG Jing1, YI Zhen-ping1*, YUE Li-li1, DONG Hui-fen1, PAN Jing-chang1, BU Yu-de2. Spectral Classification of M-Type Stars Based on Ensemble Tree Models[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(07): 2288-2292. |
[11] |
FANG Fang1, JI Yu-shan1, BAI Na1, LI Xiang1, LIU Ying1, 2*. Study on Adsorption and Desorption Characteristics of Cd2+ and Zn2+ on the Surface Sediments of Taihu Lake by Using ICP-MS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1889-1895. |
[12] |
JI Yu-shan1, FANG Fang1, WANG Hui-bin1, MA Xiao-yan1, LIU Ying1,2*. Distribution of Phosphorus Fractions and Kinetics Characteristics in Surface Sediments of Taihu Lake by Using Spectrophotometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1508-1513. |
[13] |
SONG Ting1, 2, GONG Shao-qi3, LIU Jun-zhi4, 5*, GU Zheng-fan2, SHI Jun-zhe2, WU Wei2. Performance Assessment of Atmospheric Correction for Multispectral Data of GF-4 on Inland Case Ⅱ Turbid Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1191-1197. |
[14] |
LIU Zhong-bao1, REN Juan-juan2, SONG Wen-ai1*, ZHANG Jing1, KONG Xiao2, FU Li-zhen1. Stellar Spectra Classification with Entropy-Based Learning Machine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 660-664. |
[15] |
LIU Rong1, QIAO Xue-jun2*, ZHANG Jian-nan3, DUAN Fu-qing4. An Automated Stellar Spectra Classification System Basing on Non-Parameter Regression and Adaboost[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(05): 1553-1557. |
|
|
|
|