|
|
|
|
|
|
Distribution of Phosphorus Fractions and Kinetics Characteristics in Surface Sediments of Taihu Lake by Using Spectrophotometry |
JI Yu-shan1, FANG Fang1, WANG Hui-bin1, MA Xiao-yan1, LIU Ying1,2* |
1. College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
2. Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081, China |
|
|
Abstract The surface sediments are the source and sink of many pollutants of water. Studies have shown that phosphorus and other nutrient elements in surface sediments of Taihu Lake area, specially in Meiliang Bay and East Taihu Lake, are seriously polluted.SMT method (Standards Measurements and Testing) and molybdenum antimony anti-spectrophotometry were used to pretreat and analyze phosphorus of the 18 surface sediment samples in Taihu Lake, China, and the total phosphorus pollution was evaluated in comparison with the standards of China, Canada and the United States, respectively. Moreover, the adsorption and desorption kinetics equations were established by linear fitting, the adsorption characteristics of phosphorus under different pH and soil/water ratio were obtained. And we also studied the desorption characteristics of phosphorus under different temperature and pH conditions. The results showed that the highest contents of total phosphorus, inorganic phosphorus, organic phosphorus and acid phosphorus all appeared in S9 sampling sites, the highest content of alkali phosphorus was found in S11 sampling site. For all sampling sites, the order of average contentof each fraction phosphorus was (μg·g-1): inorganic phosphorus (401.43)>acid phosphorus (377.81)>organic phosphorus (175.37)>alkali phosphorus (25.53). The results of pollution evaluation showed that except for S12,S14~S16 and S18, other sampling sites suffered varying degrees of contamination. Both adsorption and desorption processes of phosphorus on the surface sediments followed the pseudo-second-order kinetics equation. The optimum soil/water ratio was 25∶1. The pH had different effects on adsorption and desorption, respectively. The results provided not only a theoretical basis for governing the phosphorus pollution but also credible experimental data for studying the migration of phosphorus at the sediment-water interface in Meiliang Bay and Taihu Lake.
|
Received: 2017-07-05
Accepted: 2017-11-26
|
|
Corresponding Authors:
LIU Ying
E-mail: liuying4300@163.com
|
|
[1] The Ministry of Water Resources of the People’s Republic of China(中华人民共和国水利部). China Water Resources Bulletin 2015(2015年中国水资源公报), 2015.
[2] Ruban V, Lopez-Sanchez J F, Pardo P, et al. Fresenius J. Anal. Chem., 2001, 370: 224.
[3] Wang L Q, Liang T. PLoS One, 2015, 10(5): 1.
[4] YANG Hong-wei(杨宏伟). Study on the Exchange Behavior of Phosphorus and Heavy Metals in the Particulate Matter—Water Interface of Yellow River(黄河颗粒物——水体磷和重金属的交换行为研究). Beijing: China Environmental Sciences Press(北京: 中国环境科学出版社), 2013.
[5] Froelich R N. Limnol. Oceanogr., 1988, 33: 649.
[6] CHEN Juan-juan, GE Cheng-feng, JI Hong-wei, et al(陈娟娟, 葛成凤, 姬泓巍, 等). Periodical of Ocean University of China(中国海洋大学学报·自然科学版), 2015, 3: 79.
[7] SHI Xiao-yong, SHI Zhi-li(石晓勇, 史致丽). Oceanologia et Limnologia Sinica(海洋与湖沼), 2000, 4: 441.
[8] Karthikeyan K G, Tshabalala M A, Wang D, et.al. Environ. Sci. Technol., 2004, 38(3): 904.
[9] Zhu H W, Wang D Z, Cheng P D, et al. Science China (Physics, Mechanics & Astronomy), 2015, 58(2): 024702.
[10] Zhang Y, He F, Liu Z S, et al. Ecol. Eng., 2016, 95: 645. |
[1] |
LIU Jiang-qing1, YU Chang-hui2, 3, GUO Yuan2, 3, LEI Sheng-bin1*, ZHANG Zhen2, 3*. Interaction Between Dipalmityl Phosphatidylcholine and Vitamin B2
Studied by Second Harmonic Spectroscopy and Brewster Angle
Microscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1484-1489. |
[2] |
LÜ Yang, PEI Jing-cheng*, GAO Ya-ting, CHEN Bo-yu. Chemical Constituents and Spectra Characterization of Gem-Grade
Triplite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1204-1208. |
[3] |
YAO Shan1, ZHANG Xuan-ling1, CAI Yu-xin1, HE Lian-qiong1, LI Jia-tong1, WANG Xiao-long1, LIU Ying1, 2*. Study on Distribution Characteristics of Different Nitrogen and
Phosphorus Fractions by Spectrophotometry in Baiyangdian
Lake and Source Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1306-1312. |
[4] |
LI Ying-ying1, ZHANG Zhi-qing1*, WU Xiao-hong2, Andy Hsitien Shen1*. Photoluminescence in Indonesian Fossil Resins[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 814-820. |
[5] |
WANG Xiang1, 2, YIN Gao-fang1*, ZHAO Nan-jing1, GAN Ting-ting1, YANG Rui-fang1, QIN Zhi-song3, DONG Ming1, 2, CHEN Min1, 2, DING Zhi-chao1, 2, QI Pei-long1, 2, WANG Lu1, 2, MA Ming-jun1, 2, MENG De-shuo1, LIU Jian-guo1. Fast Measurement of Primary Productivity in the Yellow Sea and Bohai Sea Based on Fluorescence Kinetics Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 990-996. |
[6] |
WAN Hao-yu1, ZHOU Zi-xiong1, WU Jun-biao1, Jörg Matysik2, WANG Xiao-jie1*. Spectroscopic Techniques in the Study of Electron Transfer in Flavin Systems[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 368-375. |
[7] |
JIANG Jie1, YU Quan-zhou1, 2, 3*, LIANG Tian-quan1, 2, TANG Qing-xin1, 2, 3, ZHANG Ying-hao1, 3, ZHANG Huai-zhen1, 2, 3. Analysis of Spectral Characteristics of Different Wetland Landscapes Based on EO-1 Hyperion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 517-523. |
[8] |
LI Wei, ZHANG Xue-li, SU Qin, ZHAO Rui, SONG Hai-yan*. Qualitative Analysis of Chlorpyrifos Pesticide Residues in Cabbage Leaves Based on Visible Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 80-85. |
[9] |
ZHANG Lin1, WEN Bao-ying2, LIU Wei-wei1, FU Wen-xiang1, KONG Jing-lin1*, LI Jian-feng2*. Rapidly Detection of Chemical Warfare Agent Simulants by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 110-114. |
[10] |
TANG Ming-zhu1, WANG Zhi-ying1, WANG Yun-shan2*, BAO Wei-jun2, YANG Gang2, SUN Yong3. Characterization of the Impurity Phases in Phosphogypsum by the EBSD-XPS Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 136-140. |
[11] |
PENG Jian-wen1, XIAO Chong1, SONG Qiang1, PENG Zhong-chao1, HUANG Ruo-sen1, YANG Ya-dong3, TANG Gang1, 2, 3*. Flame Retardant Mechanism Investigation of Thermoplastic Polyurethane Composite/Ammonium Polyphosphate/Aluminum Hydroxide Composites Based on Spectroscopy Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3901-3908. |
[12] |
SUN Di1, 2, LI Meng-ting1, MU Mei-rui1, ZHAO Run1*, ZHANG Ke-qiang1*. Rapid Determination of Nitrogen and Phosphorus in Dairy Farm Slurry Via Near-Mid Infrared Fusion Spectroscopy Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3092-3098. |
[13] |
ZHANG Yan-jun, KANG Cheng-long, LIU Ya-qian, FU Xing-hu*, ZHANG Jin-xiao, WANG Ming-xue, YANG Liu-zhen. Rapidly Detection of Total Nitrogen and Phosphorus Content in Water by Surface Enhanced Raman Spectroscopy and GWO-SVR Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3147-3152. |
[14] |
ZHANG Bin-bin1, 2, LI Jing-bin1, 2, WANG Shi-ning1, 2, HE Peng-fei1, 2, ZHA Xiao-qin1, 2, 3. Determination of Lithium, Iron and Phosphorus in Carbon Composite Lithium Iron Phosphate by Perchloric Acid Digestion-Inductively Coupled Plasma Optical Emission Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2703-2709. |
[15] |
GUO Mei1, 2, ZHANG Ruo-yu2, 3, ZHU Rong-guang2, 3, DUAN Hong-wei1, 2*. Quantitative Determination of Water-Soluble P in Biochar Based on NELIBS Technology and EN-SVR Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2301-2306. |
|
|
|
|