光谱学与光谱分析 |
|
|
|
|
|
Study on Using Apparent Spectrum to Retrieve the Inherent Optical Properties of Ocean Water |
ZHANG Min-wei1, DONG Qing1, TANG Jun-wu2,3, SONG Qing-jun4 |
1. Key Laboratory of Digital Earth, Center for Earth Observation and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China 2. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Applications of Chinese Academy of Sciences, Beijing 100101, China 3. National Ocean Technology Center, Tianjin 300112, China 4. National Satellite Ocean Application Service, Beijing 100081, China |
|
|
Abstract The inherent optical properties are needed when establishing the semi-analytic model in the ocean color retrieval algorithm. Using the in-situ measurements, a retrieval model for inherent optical properties from remote sensing reflectance was established. The in-situ data measured in the 2003 spring cruise over the Yellow and East China Seas is introduced. The measurement method for remote sensing reflectance, particle backscattering and absorption coefficients are detailed. Based on the bio-optical model, the inherent optical properties were retrieved by optimization of Nelder-Mead simplex. The retrieval results of the absorption and backscattering coefficients for the material other than pure water were compared with the counterpart of the in-situ measurements. The comparison shows that the root-mean-square relative error for the absorption coefficient of materials other than water is less than 33%. The value is 30% for the particle backscattering coefficient. The analysis of the error shows that the retrieval model established in this paper can provide an efficient approach to retrieving the absorption and backscattering coefficients. The retrieval model can provide a reference for the application of remotely sensed data to the research on the bio-optical properties of Yellow and East China Seas.
|
Received: 2010-07-22
Accepted: 2010-10-22
|
|
Corresponding Authors:
ZHANG Min-wei
E-mail: zhangminwei2004@126.com
|
|
[1] Mobley C D. Light and Water-Radiative Transfer in Natural Waters. New York: Academic Press, 1994. [2] Preisendorfer R W. Hydrologic Optics. USA: National Oceanic and Atmospheric Administration, 1976. [3] Tassan S. International Journal of Remote Sensing, 1993, 14(6): 1221. [4] O’Reilly J E, Maritorena S, Mitchell B G, et al. Journal of Geophysical Research, 1998, 103(C11), 24937. [5] Miller R L, Mckee B A. Remote Sensing of Environment, 2004, 93(1): 259. [6] Carder K L, Chen F R, Cannizzaro J P, et al. Advances in Space Research, 2004, 33(7): 1152. [7] Dekker A G, Vos R J, Peters S W. The Science of the Total Environment, 2002, 268(1): 197. [8] Doxaran D, Froidefond J M, Lavender S, et al. Remote Sensing of Environment, 2002, 81(1): 149. [9] Morel A, Huot Y, Gentili B, et al. Remote Sensing of Environment, 2007, 111: 69. [10] Warrick J A, Mertes L A K, Siegel D A, et al. International Journal of Remote Sensing, 2004, 25(10), 1995. [11] Preisendorfer R W. Recommendation on the Standardization of Concepts, Terminology and Notation of Hydrologic Optics. California: Scripps Inst. of Oceanogr., 1960. 1. [12] Preisendorfer R W. Application of Radiation Transger Theory to Light Measurements in the Sea. IUGG-Symp. on Radiant Energy in the Sea. Mongraphie, 1961. 83. [13] Morel A, Smith R C. Marine Geodesy, 1982, 5(4): 335. [14] Gordon H R, Brown O B, Jacobs M. Appl. Opt., 1975, 14(2): 417. [15] Kirk J T O. Aust. J. Mar. Fresh Res.,1981, 32: 517. [16] Kirk J T O. Limnol. Oceanogr., 1984, 29(2): 350. [17] Concannon B M, Davis J P. Applied Optics, 1999, 38(24): 5104. [18] Jerome J H, Bukata R P, Bruton J E. Applied Optics, 1988, 27(19): 4012. [19] Lee Z P, Carder K L, Arnone R. Appl. Opt.,2002, 41(27): 5755. [20] Lee Z P, Carder K L, Mobley C D, et al. Appl. Opt.,1998, 37(27): 6329. [21] Lee Z P, Carder K L, Mobley C D, et al. Appl. Opt.,1999, 38(18): 3831. [22] Doerffer R, Heymann K, Schiller H. Case 2 Water Algorithm for the Medium Resolution Imaging Spectrometer (MERIS) on ENVISAT. Proceedings of the ENVISAT Validation Workshop, ESA Report, 2002. [23] Doerffer R, Schiller H. IEEE 2000 International Geoscience and Remote Sensing Symposium. Honolulu, Hawaii, 2000, 714. [24] Schiller H, Doerffer R. IEEE Trans. Geosci. Remote Sens., 2005, 43(7): 1585. [25] Hoge F E, Lyon P E. J. Geophys. Res., 1996, 101(C7): 16631. [26] Hoge F E, Wright C W, Lyon P E, et al. J. Geophys. Res., 2001, 106(C12): 31129. [27] SONG Qing-jun, TANG Jun-wu, MA Rong-hua(宋庆君, 唐军武, 马荣华). Ocean Technology(海洋技术), 2008, 27(1): 48. [28] SONG Qing-jun, TANG Jun-wu(宋庆君, 唐军武). Acta Oceanologica Sinica(海洋学报), 2006, 28(4): 56. [29] MA Rong-hua, SONG Qing-jun, LI Guo-yan,et al(马荣华, 宋庆君, 李国砚,等). Journal of Lake Sciences(湖泊科学), 2008, 20(3): 375. [30] WANG Xiao-mei, TANG Jun-wu, SONG Qing-jun, et al(王晓梅,唐军武,宋庆君,等). Oceanologia et Limnologia Sinica(海洋与湖沼), 2006, 37(3): 256. [31] DUAN Hong-tao, MA Rong-hua, KONG Wei-juan, et al(段洪涛,马荣华,孔维娟,等). Journal of Lake Sciences(湖泊科学), 2009, 21(2): 242. [32] Xi H, Qiu Z, He Y, et al. Chinese Journal of Oceanology and Limnology, 2007: 25(4): 359. [33] Mueller J L, Fargion G S. Ocean Optics Protocols for Satellite Ocean Color Validation, Rev 3rd ed. NASA/TM-2002-21004/Rev3 v1/v2. http://oceancolor.gsfc.nasa.gov/DOCS, 2002. [34] Mobley C D. Applied Optics, 1999, 38(36): 7442. [35] Doxaran D, Froidefond J M, Lavender S. Remote Sensing of Environment, 2002, 81(1): 149. [36] Moore C, Hankins D, Van Z H, et al. AC9 Protocol Document. Philomath: Western Environmental Laboratories, 1996. http://www.wetlabs.com, 2000-12-18/2001-01-30. [37] Maffione R A, Dana D R. Applied Optics, 1997, 36(24): 6057. [38] Oishi T. Appl. Opt.,1990, 29(31): 4658. [39] Hobi-labs Inc. Backscattering Sensor Calibration Manual (Revision J). www.hobilabs.com, 2003. [40] Barnard A H, Pegau W S, Zaneveld J R V. Journal of Geophysical Research, 1998, 103(C11): 24955. [41] Santhyendranath S, Cota G, Stuart V, et al. International Journal of Remote Sensing, 2001, 22(2-3): 249. [42] Doxaran D, Cherukuru N, Lavender S J. Applied Optics, 2006, 45(1): 2310. [43] GOULD R W, ARNONE R A. Remote Sensing of Environment, 1997, 61: 290. [44] Smith R C, Baker K S. Applied Optics, 1981, 20(2): 177. [45] Press W H, Teukolsky S A, Vetterling W T, et al. Numerical Recipes in C: The Art of Scientific Computing, 2nd Edition. Cambridge: Cambridge University Press, 1992. [46] WET Labs, Inc. ac Meter Protocol Document (Revision N). http://www.wetlabs.com/products/pub/ac9/acprotn.pdf, 2008. [47] FENG Shi-zuo, LI Feng-qi, LI Shao-jing(冯士笮, 李凤歧, 李少菁). Introduction of Marine Sciences(海洋科学导论). Beijing: Higher Education Press(北京: 高等教育出版社), 1999. 233. [48] TANG Jun-wu, TIAN Guo-liang, WANG Xiao-yong,et al(唐军武,田国良,汪小勇,等). Journal of Remote Sensing(遥感学报), 2004, 8(1): 37. [49] Mckee D, Piskozub J, Brown I. Opt. Express, 2008, 16(24): 19480.
|
[1] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[2] |
LAN Yan1,WANG Wu1,XU Wen2,CHAI Qin-qin1*,LI Yu-rong1,ZHANG Xun2. Discrimination of Planting and Tissue-Cultured Anoectochilus Roxburghii Based on SMOTE and Inception-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 158-163. |
[3] |
CHENG Gang1, CAO Ya-nan1, TIAN Xing1, CAO Yuan2, LIU Kun2. Simulation of Airflow Performance and Parameter Optimization of
Photoacoustic Cell Based on Orthogonal Test[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3899-3905. |
[4] |
LI Zhong-bing1, 2, JIANG Chuan-dong2, LIANG Hai-bo3, DUAN Hong-ming2, PANG Wei2. Rough and Fine Selection Strategy Binary Gray Wolf Optimization
Algorithm for Infrared Spectral Feature Selection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3067-3074. |
[5] |
LI Xin1, LIU Jiang-ping1, 2*, HUANG Qing1, HU Peng-wei1, 2. Optimization of Prediction Model for Milk Fat Content Based on Improved Whale Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2779-2784. |
[6] |
LÜ Shi-lei1, 2, 3, WANG Hong-wei1, LI Zhen1, 2, 3*, ZHOU Xu1, ZHAO Jing1. Hyperspectral Identification Model of Cantonese Tangerine Peel Based on BWO-SVM Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2894-2901. |
[7] |
JIN Hua-wei1, 2, 3, WANG Hao-wei1, 2, LUO Ping1, 2, FANG Lei1, 2. Simulation Design and Performance Analysis of Two-Stage Buffer
Photoacoustic Cell[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2375-2380. |
[8] |
JIANG Da-peng2, GAO Li-bin2, CHEN Jin-hao2, ZHANG Yi-zhuo1*. Near Infrared Spectroscopy Modeling Method of Wood Tensile Strength Based on MC-UVE-IVSO[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2488-2493. |
[9] |
YAN Zhong-wei1, 2, 3, TIAN Xi2, 3, ZHANG Yi-fei2, 3, LI Lian-jie2, 3, LIU San-qing1, 2, 3, HUANG Wen-qian2, 3*. Online Detection of Soluble Solids Content in Different Parts of
Watermelons Based on Full Transmission Near Infrared
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1800-1808. |
[10] |
ZHANG Rong1, 2, DUAN Ning1, 3, JIANG Lin-hua1, 3*, XU Fu-yuan3, JIN Wei3, LI Jian-hui1. Study on Optical Path Optimization for Direct Determination of
Spectrophotometry of High Concentration Hexavalent Chromium
Solution by Ultraviolet Visible Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1829-1837. |
[11] |
XU Qi-lei, GUO Lu-yu, DU Kang, SHAN Bao-ming, ZHANG Fang-kun*. A Hybrid Shrinkage Strategy Based on Variable Stable Weighted for Solution Concentration Measurement in Crystallization Via ATR-FTIR Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1413-1418. |
[12] |
ZHANG Xuan1, ZENG Chao-bin1, LIU Xian-ya1, CHEN Ping1, 2, 3*, HAN Yan2, 3. Multi-Spectral Temperature Measurement Method Based on Multivariate Extreme Value Optimization[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 705-711. |
[13] |
LI Xiao-kai, YU Hai-ye, YU Yue, WANG Hong-jian, ZHANG Lei, ZHANG Xin, SUI Yuan-yuan*. Inversion Model of Clorophyll Content in Rice Based on a Bonic
Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 93-99. |
[14] |
JIANG Xiao-gang1, ZHU Ming-wang1, YAO Jin-liang1, LI Bin1, LIAO Jun1, LIU Yan-de1*, ZHANG Jian-yi2, JING Han-song2. Research on Parameter Optimization of Apple Sugar Model Based on Near-Infrared On-Line Device[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 116-121. |
[15] |
LIU Yan-de, CUI Hui-zhen, LI Bin, WANG Guan-tian, XU Zhen, LI Mao-peng. Study on Optimization of Apple Sugar Degree and Illumination Position Based on Near-Infrared Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3373-3379. |
|
|
|
|