光谱学与光谱分析 |
|
|
|
|
|
Quantum Efficiency of the 5D0 Level of Eu3+ at C2 Site in Cubic Nanocrystalline Y2O3 |
MENG Qing-yu1, 2, CHEN Bao-jiu1*, XU Wu1, 3, WANG Xiao-jun1, XIE Yi-hua1, LAI Hua-sheng1, 4, DI Wei-hua1, REN Guo-zhong1, ZHAO Xiao-xia1, YANG Yan-min1 |
1. Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China 2. Graduate School of Chinese Academy of Sciences, Beijing 100039, China 3. University of Science and Technology of China, Hefei 230026, China 4. Jiangxi South Rare-Earth High-Tech. Co., Ltd. Ganzhou 341000, China |
|
|
Abstract In the present the authors are trying to work out how the quantum efficiency depends on the nanocrystalline size. Cubic nanocrystalline Y2O3:Eu3+ samples were prepared by chemical self-combustion. The bulk Y2O3:Eu3+ was obtained by annealing the nanocrystalline at 1 000 ℃ for 2 h. The emission spectra, XRD and fluorescence decay showed that the emission intensities are increased and fluorescence decay becomes slow with an increase in particle diameter of the samples. Two routes were used to estimate the quantum efficiency of the 5D0 level of Eu3+ at C2 site. The quantum efficiencies of 5D0 level of Eu3+ at C2 site in the samples depend on the nanocrystalline sizes. Finally, a detailed discussion about these two approaches for estimating the quantum efficiencies was made.
|
Received: 2005-05-28
Accepted: 2005-08-28
|
|
Corresponding Authors:
CHEN Bao-jiu
|
|
Cite this article: |
MENG Qing-yu,CHEN Bao-jiu,XU Wu, et al. Quantum Efficiency of the 5D0 Level of Eu3+ at C2 Site in Cubic Nanocrystalline Y2O3[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2006, 26(08): 1377-1381.
|
|
|
|
URL: |
https://www.gpxygpfx.com/EN/Y2006/V26/I08/1377 |
[1] LIU Chun-xu, ZHANG Jia-hua, Lü Shao-zhe, et al(刘春旭,张家骅,吕少哲,等). Acta Physica Sinica(物理学报), 2004, 53(11): 3945. [2] Bhargava R N, Gallagher D, Hong X, et al. Phys. Rev. Lett., 1994, 72: 416. [3] Bhargava R N. J. Lumin., 1996, 70: 85. [4] PEI Yi-hui, LIU Xing-ren(裴轶慧,刘行仁). Chinese J. Lumin.(发光学报), 1996, 17(1): 52. [5] CHEN Bao-jiu, WANG Hai-yu, HUANG Shi-hua(陈宝玖,王海宇, 黄世华). Acta Optica Sinica(光学学报),2001, 21(6): 762. [6] Song H W, Chen B J, Peng H S, et al. Appl. Phys. Lett., 2002, 81: 1776. [7] LI Yu-lin(李玉林). Chinese Rare Earths(稀土), 1999, 20: 2. [8] Ranson R M, Evangelou E, Thomas C B. Appl. Phys. Lett., 1998, 72(21): 2663. [9] Jia M L, Zhang J H, Lu S Z, et al. Chemical Physics Letters, 2004, 384: 193. |
[1] |
WANG Ling-juan, OU Quan-hong, YAN Hao, TANG Jun-qi*. Preparation and Catalytic Properties of Gold Nanoflowers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3747-3752. |
[2] |
QI Guo-min1, TONG Shi-qian1, LIN Xu-cong1, 2*. Specific Identification of Microcystin-LR by Aptamer-Functionalized Magnetic Nanoprobe With Laser-Induced Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3813-3819. |
[3] |
TAO Bei-bei, WU Ning-ning, WANG Hai-bo*. Highly Sensitive Determination of Rutin Based on Fluorescent Glutathione Stabilized Copper Nanoclusters[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3158-3162. |
[4] |
YU Run-tian1, MA Man-man1, QIN Zhao2*, LIU Guan-nan1, ZHANG Rui1, LIU Dong1*. Study on Diagnostics of Nano Boron-Based Composite Metal Particles in Dispersion Combustion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3252-3259. |
[5] |
ZHAO Ling-yi1, 2, YANG Xi3, WEI Yi4, YANG Rui-qin1, 2*, ZHAO Qian4, ZHANG Hong-wen4, CAI Wei-ping4. SERS Detection and Efficient Identification of Heroin and Its Metabolites Based on Au/SiO2 Composite Nanosphere Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3150-3157. |
[6] |
YE Zi-yi, LIU Shuang, ZHANG Xin-feng*. Screening of DNA Dyes for Colorimetric Sensing Via Rapidly Inducing Gold Nanoparticles Aggregation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2805-2810. |
[7] |
LI Shi-lun1, LIU Tao2, SONG Wen-min3, WANG Tian-le2, LIU Wei1, CHEN Liang1, LI Zhi-gang2*, FENG Shang-shen1*. Study of Two-Dimensional Ordered Magnetic Co Nanosphere Array Film Construction and Its Optical Properties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2037-2042. |
[8] |
CHENG Chang-hong1, XUE Chang-guo1*, XIA De-bin2, TENG Yan-hua1, XIE A-tian1. Preparation of Organic Semiconductor-Silver Nanoparticles Composite Substrate and Its Application in Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2158-2165. |
[9] |
QIAN Duo, SU Wen-en, LIU Zhi-yuan, GAO Xiao-yu, YI Yu-xin, HU Cong-cong, LIU Bin, YANG Sheng-yuan*. Soy Protein Gold Nanocluster as an “Off-On” Fluorescent Probe for the Detection of Bacillus Anthracis Biomarkers DPA[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1815-1820. |
[10] |
ZONG Zhi-fang1, 2, 3, LONG Hong-ming1*, Yilin Gui3*, ZHANG Hao1, 2, DONG Wei2, ZHOU Xiao-hui2, JI Yi-long1. Microstructure Characteristics of Nano Solid Waste High Sulfur Cement Based on XRD and FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1974-1980. |
[11] |
OU Li-juan1*, LI Jing1, ZHANG Chao-qun1, LUO Jian-xin1, WEI Ji1, WANG Hai-bo2*, ZHANG Chun-yan1. Redox-Controlled Turn-on Fluorescence Sensor for H2O2 and Glucose Using DNA-Template Gold Nanoclusters[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3757-3761. |
[12] |
ZHOU Qing-chao. Preparation and Optical Characterization of Copper Indium Sulfide Nanocrystal/PMMA Composite Film[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3672-3677. |
[13] |
FAN Dan-yang1, ZHANG Xue-cheng1, GAO Jun1, WANG Jia-bin2, LÜ Hai-xia1*. Study on Specific Detection of Sulfadimethoxine Based on Aptamer-Modified Up-Conversion Fluorescent Nanomaterial[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3409-3414. |
[14] |
WANG Li, GAO Shi-fang, MENG Lu-ping, SHANG Liang, SHI Meng*, LIU Guang-qiang. Au-Nanorod Patterned Optical Fiber SERS Probes Fabricated by Laser-Induction[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3454-3460. |
[15] |
ZHENG Yu-xia1, 2, TUERSUN Paerhatijiang1, 2*, ABULAITI Remilai1, 2, CHENG Long1, 2, MA Deng-pan1, 2. Retrieval of Polydisperse Au-Ag Alloy Nanospheres by Spectral Extinction Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3039-3045. |
|
|
|
|