|
|
|
|
|
|
Identification and Raman Spectroscopy Characteristics Analysis of the New Psychoactive Substances Etomidate and Its Analogs |
WANG Shu-dong1*, ZHENG Xuan1, TIAN Ren-kui2 , ZHANG Yan1*, WU Jing-jie1* |
1. Center of Laboratory, Guizhou Police College, Guiyang 550000, China
2. Physical Evidence Identification Center of Guizhou Provincial Public Security Department, Guiyang 550000, China
|
|
|
Abstract In this study, we report the Raman spectroscopy of etomidate and its analogs medetomidate, propoxate, and the metabolite etomidate acid, and the spectroscopy was analyzed in conjunction with quantum chemical calculations. The results demonstrate distinct Raman spectroscopy differences between etomidate acid and etomidate, due to structural differences, etomidate, medetomidate and propoxate exhibit significantly different Raman activities in the regions of 691~715, 842~866, 955, 1 351~1 375, and 1 411~1 453 cm-1, which are the key to differentiate the three substances. The investigation further compares the Raman spectroscopy of etomidate and its analogs with those of New Psychoactive Substances(NPS), including piperazine, fentanyl, and cathinone. Potential energy distribution (PED) analysis identifies characteristic Raman peaks near 923, 980, 1 000, 1 030, 1 710, and 1 360 cm-1 are identified as key indicators for recognizing etomidate and its analogs. Finally, the suspected etomidate “smoke powder” seized by the public security department is tested, and its etomidate content is rapidly confirmed through Raman spectroscopy. The study provides an important reference for the rapid detection of etomidate and its analogs, and also systematically analyzes the differential Raman spectroscopy of etomidate, medetomidate, propoxate and etomidate acid, which makes it possible to differentiate etomidate and its analogs by Raman spectroscopy.
|
Received: 2024-10-26
Accepted: 2025-05-14
|
|
Corresponding Authors:
WANG Shu-dong, ZHANG Yan, WU Jing-jie
E-mail: wsd@gzpc.edu.cn;zhangyanky@126.com;Wjj972@163.com
|
|
[1] Valk B I, Struys M M R F. Clinical Pharmacokinetics, 2021, 60(10): 1253.
[2] Uhm J, Hong S, Han E. Forensic Science Medicine and Pathology, 2024, 20(1): 249.
[3] China National Narcotic Control Committee(国家禁毒委员会办公室). China Drug Situation 2021(《2021年中国毒情形势报告》), 2022-06-23, www.nncc626.com/2022-06/23/c_1211659746.htm.
[4] ZHOU Hua, XU Yue, HU Yu-peng, et al(周 华,徐 越,胡羽鹏,等). Forensic Science and Technology(刑事技术), 2024, doi: 10.16467/j.1008-3650.2024.0047.
[5] HAN Xing, LIU Xin, DU Ming-luo, et al(韩 兴,刘 昕,杜明荦,等). Journal of Forensic Medicine(法医学杂志), 2023, 39(6): 564.
[6] Park Y J, Cho E, Kim S H, et al. Journal of Forensic Science, 2022, 67(6): 2479.
[7] Huang R, Peng A, Hu J, et al. Scientla Sicica Chimica, 2023, 53(5): 861.
[8] Wang H, Xue Z, Wu Y, et al. Analytical Chemistry, 2021, 93(27): 9373.
[9] Turzhitsky V, Zhang L, Horowitz G L, et al. Small, 2018, 14(47): 1802392.
[10] Mirsafavi R, Moskovits M, Meinhart C. Analyst, 2020, 145(9): 3440.
[11] Ye J, Wang S, Zhang Y, et al. Applied Optics, 2021, 60(8): 2354.
[12] LI Chang-ming, GU Yi-fan, ZHANG Hong-chen, et al(李长明, 顾一凡, 张红臣, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2024, 44(6): 1566.
[13] Frisch M, Trucks G, Schlegel H, et al. Gaussian Inc. Wallingford CT. 2009.
[14] Goswami U, Rahman M M, Teng J, et al. Nature Communications, 2023, 14(1): 3169.
[15] Laury M L, Carlson M J, Wilson A K. Journal of Computational Chemistry, 2012, 33(30): 2380.
[16] Qin Y, Yin S, Chen M, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 285(262): 121923.
[17] LI Jin, JIANG Hong, ZHANG Xin-yi, et al(李 锦, 姜 红, 张馨艺, 等). Chem. Bull.(化学通报), 2022, 85(6): 759.
[18] WU Guo-ping, HU Chen-chen, LU Teng, et al(吴国萍, 胡辰辰, 陆 腾, 等). Chinese Journal of Analysis Laboratory(分析试验室), 2023, 42(10): 1364.
[19] Ding Z, Wang C, Song X, et al. ACS Applied Materials & Interfaces, 2023, 15(9): 12570.
|
[1] |
CHEN Xin-gang1, 2, AO Yi1, ZHANG Zhi-xian1*, MA Zhi-peng1, ZHANG Wen-xuan1, WAN Fu3, KUANG Lu1, LUO Bo-wen1. Raman Spectroscopic Detection of the Aging State of Oil-Paper Insulation in Combined Diffusion-Based WGANGP Transformers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(08): 2164-2173. |
[2] |
XU Qing1, TANG Jia-wei2, LIU Xue-meng3, GUO Jing-xing4, ZHU Li-jun1, ZHOU Qing-qing1, WANG Liang2, LU Guang-ming1*. Diagnostic Method for Brain Glioma Grading Based on Convolutional Neural Networks and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(08): 2247-2252. |
[3] |
WANG Feng-chan1, NIU Lu1, YE Hai-yan1, FU Xiao-ting2, DAI Jing2, LI Yuan-dong2, HU Hai-bo1, LU Xue-chao1*. Study on Rapid Antimicrobial Susceptibility Test of Pseudomonas Aeruginosa by D2O-Labeled Single-Cell Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(08): 2253-2258. |
[4] |
WU Shu-lei1, 2, ZHANG Jia-tian1, 2, WANG Jia-jun2, DANG Shi-jie2, ZHAO Ling-xiao2, CHEN Yi-bo2*. Pathogenic Bacteria Raman Spectrum Classification Method Based on
Diffusion Kernel Attention[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(07): 1940-1945. |
[5] |
JIANG Yi1, PAN Jiao1, DUAN Hong-ying2*. The Scientific Analysis of Materials of Polychrome Paintings From
Northeast Chonglou of the Forbidden City[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(07): 1953-1960. |
[6] |
XU De-fang1, GUAN Hong-pu2, ZHAO Hua-min3, ZHANG Shu-juan3, ZHAO Yan-ru2*. Early Detection Method of Mechanical Damage of Yuluxiang Pear Based on SERS and Deep Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(06): 1712-1718. |
[7] |
LI Wen1, LUO Cheng-kui1*, CHEN Shi-heng2*, JIN Hao-shu2, LI Jie1, LI Yi-bo1. Rapid Quantitative Analysis of Acidic Ions in In-Situ Leaching Solution Using Cavity-Enhanced Raman Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(06): 1744-1751. |
[8] |
GAO Fei1, 2, LIN Wan1, JIA Zhe1, BAI Qi-hui1, LIU Jing1, WANG Yi-fan1, LI Wei-ying3. Spectroscopic Study on the Evolution of Coal Molecular Structure During CO2 Storage[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(06): 1791-1800. |
[9] |
JIANG Heng1, LÜ Zi-wei1, LI Yang2, DONG Tuo1*. A Novel Strategy for Viral Detection in Acute Respiratory Infections: Combining SERS With Machine Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(05): 1217-1224. |
[10] |
GUAN Li-chang1, 2, FENG Lei2, 3, ZHAO Nan1*, JIANG Xue-mei2*. Study of Fenfluramine Molecule Based on the Density Functional Theory[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(05): 1270-1276. |
[11] |
ZHOU Wei-qiang1, LIU Ning1, HE Jing2, CHEN Hui-li3, LEI Yu3, RUAN Fang-hong3, HOU Jing-min4. Analysis and Research on Polychrome Pigments for the Statues of Yuanjue Cave, Anyue Grottoes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(05): 1373-1382. |
[12] |
ZHANG Wen-jie1, ZHANG Yu2, CAO Zhen-wei3, HAN Xiang-na1*, GUO Hong1. Analysis of Pigments of Ming Dynasty Polychrome Paintings Composition in the Juehuang Hall of the Mingjiao Temple[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(05): 1389-1394. |
[13] |
CHEN Xin-gang1, 2, ZHANG Wen-xuan1, MA Zhi-peng1*, ZHANG Zhi-xian1, WAN Fu3, AO Yi1, ZENG Hui-min1. Improved Convolutional Neural Network Quantification of Mixed Fault Characterization Gases in Transformers Based on Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(04): 932-940. |
[14] |
YANG Bo, ZHANG Ya-ru, CHENG Bi-yao, LI Yu-wei, QU Peng-fei, TANG Hui, LIU Hai-bin, WANG Xiao-zhuo*. Investigation of Hydrogen Bonding in Aqueous Nitric Acid Solution Under Concentration Perturbation by Two-Dimensional Correlated Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(04): 958-963. |
[15] |
ZHANG Wen-jie1, GAO Shan2, CAO Zhen-wei3, HAN Xiang-na1*. Analysis of Pigments of Polychrome Paintings From the Baoguang Hall of Prince Kung's Palace Museum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(04): 1028-1035. |
|
|
|
|