|
|
|
|
|
|
Coherent Raman Scattering Microscopy and Its Recent Research Progress in in Vivo Imaging |
LI Shu-qi, LUO Guo-quan, CHEN Yu, YU Bin, QU Jun-le, LIN Dan-ying* |
Key Laboratory of Optoelectronic Devices and Systems of the Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
|
|
|
Abstract In vivo imaging technology has revolutionary significance, enabling real-time observation of living organisms and providing dynamic information directly related to biological processes. This is crucial for understanding disease mechanisms and evaluating treatment effects. Coherent Raman scattering (CRS) microscopy offers the advantage of specific molecular imaging in biological samples without the need for fluorescent probes that might interfere with biomolecular function, making it a promising tool in the field of in vivo imaging. However, CRS microscopy still faces challenges in practical applications in in vivo imaging, including photodamage, limited imaging depth, and motion artifacts. Recent advancements in related technology have led to significant breakthroughs, addressing these challenges by minimizing photodamage, extending imaging depth, eliminating or reducing motion artifacts, and enabling multimodal imaging. In vivo real-time imaging of human skin, brain, and spine in experimental animal models and tumors has driven substantial progress in CRS microscopy, both in in vivo imaging research and clinical applications. This paper offers a comprehensive review of the latest developments in CRS microscopy for in vivo imaging, providing an in-depth analysis of current challenges and their solutions to contribute to this technology's ongoing development and broader application. Common strategies to overcome photodamage involve reducing the thermal effects and chemical reactions induced by the laser in the sample, typically by limiting laser power and integration time. Several approaches have been explored to address the limitation of imaging depth, including imaging superficial tissues such as the skin or areas near the surface, combining optical windows, or directly imaging deeper tissues or organs exposed through minimally invasive surgery. Adaptive optics technology helps balance depth with non-invasive imaging, while endoscopic imaging provides an additional solution. To minimize or eliminate motion artifacts, it is crucial first to keep the organism stationary or reduce movement through appropriate anesthesia and fixation techniques. In addition, optical windows and real-time motion correction algorithms can be employed to mitigate further jitter caused by physiological activities like breathing and heartbeat in anesthetized samples. Increasing imaging speed is another way to reduce motion artifacts. Finally, combining CRS with other nonlinear optical microscopy techniques, such as two-photon excitation fluorescence and second-harmonic generation, enables multimodal imaging, providing richer information, enhancing the analysis of in vivo biological samples, and offering deeper insights into biological processes.
|
Received: 2025-01-20
Accepted: 2025-03-04
|
|
Corresponding Authors:
LIN Dan-ying
E-mail: dylin@szu.edu.cn
|
|
[1] Zumbusch A, Holtom G R, Xie Sunny. Physical Review Letters, 1999, 82(20): 4142.
[2] YUAN Yuan, WANG Meng-fan, QU Yun-fei, et al(袁 媛, 王梦梵, 曲云菲, 等). Acta Polymerica Sinica(高分子学报),2021,52(9):1206.
[3] Zhang C, Aldana-Mendoza J A. Journal of Physics: Photonics, 2021, 3(3): 032002.
[4] Cheng J, Sunny X. The Journal of Physical Chemistry B, 2004, 108(3): 827.
[5] Freudiger C W, Min W, Saar B G, et al. Science, 2008, 322(5909): 1857.
[6] Rinia H A, Burger K N J, Bonn M, et al. Biophysical Journal, 2008, 95(10): 4908.
[7] Steuwe C, Patel I I, Ul Hasan M, et al. Journal of Biophotonics, 2014, 7(11-12): 906.
[8] Donaldson P M, Willison K R, Klug D R. The Journal of Physical Chemistry B, 2010, 114(37): 12175.
[9] Lu W, Yong Y, Shen Y, et al. Proceedings of the National Academy of Sciences,2013,110(28): 11226.
[10] Hou J, Williams J, Botvinick E L, et al. Cancer Research, 2018, 78(10): 2503.
[11] Zhang C, Li J, Lan L, et al. Analytical Chemistry, 2017, 89(8): 4502.
[12] Hellerer T, Axäng C, Brackmann C, et al. Proceedings of the National Academy of Sciences, 2007, 104(37): 14658.
[13] König K, Breunig H G, Batista A, et al. Journal of Biomedical Optics, 2020, 25(1): 014515.
[14] Lee M, Downes A, Chau Y Y, et al. IntraVital, 2015, 4(1): e1055430.
[15] Jung Y, Tam J, Ray Jalian H, et al. Journal of Investigative Dermatology, 2015, 135(1): 39.
[16] Zhu J, Lee B, Buhman K K, et al. Journal of Lipid Research, 2009, 50(6): 1080.
[17] Fu Y, Huff T B, Wang H, et al. Optics Express, 2008, 16(24): 19396.
[18] Galli R, Uckermann O, Temme A, et al. Journal of Biophotonics, 2017, 10(3): 404.
[19] Luo Z, Xu H, Samanta S, et al. Biomedicines, 2022, 10(11): 2949.
[20] Qu J, Luo G, Li S, et al. Analytical Chemistry, 2024, 96: 2754.
[21] Lu F K, Basu S, Igras V, et al. Proceedings of the National Academy of Sciences, 2015, 112(37): 11624.
[22] Wu W, He S, Wu J, et al. Nature Communications, 2022, 13: 1959.
[23] Shi Y, Shi R, Cheng J, et al. Journal of Biomedical Optics, 2011, 16(10): 106012.
[24] Huff T B, Cheng J. Journal of Microscopy, 2007, 225(2): 175.
[25] Fu Y, Wang H, Huff T B, et al. Journal of Neuroscience Research, 2007, 85(13): 2870.
[26] Veilleux I, Spencer J A, Biss D P, et al. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(1): 10.
[27] Bélanger E, Henry F P, Vallée R, et al. Biomedical Optics Express, 2011, 2(9): 2698.
[28] Evans C L, Potma E O, Puoris'haag M, et al. Proceedings of the National Academy of Sciences, 2005, 102(46): 16807.
[29] Andreana M, Sturtzel C, Spielvogel C P, et al. Frontiers in Cell and Developmental Biology, 2021, 9: 675636.
[30] Breunig H G, Bückle R, Kellner Höfer M, et al. Microscopy Research and Technique, 2012, 75(4): 492.
[31] Rodewald M, Bae H, Huschke S, et al. Journal of Biophotonics, 2021, 14(6): e202100040.
[32] Sarri B, Chen X, Canonge R, et al. Journal of Controlled Release, 2019, 308: 190.
[33] Liao C, Wang P, Huang C, et al. ACS Photonics, 2018, 5(3): 947.
[34] Hajireza P, Forbrich A, Jiang Y, et al. Proceedings of SPIE,2013,8581: 858129.
[35] Chen X, Gasecka P, Formanek F, et al. British Journal of Dermatology, 2016, 174(4): 803.
[36] Hellerer T, Enejder A M K, Zumbusch A. Applied Physics Letters, 2004, 85(1): 25.
[37] Andreana M, Sturtzel C, Yang M, et al. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27(4): 7100509.
[38] Chien C, Chen W, Wu J, et al. Journal of Biomedical Optics, 2011, 16(1): 016012.
[39] Chen A J, Li J, Jannasch A, et al. ChemPhysChem, 2018, 19(19): 2500.
[40] Freudiger C W, Min W, Holtom G R, et al. Nature Photonics, 2011, 5(2): 103.
[41] Hu F, Wei L, Zheng C, et al. The Analyst, 2014, 139(10): 2312.
[42] Li X, Li Y, Jiang M, et al. Analytical Chemistry, 2019, 91(3): 2279.
[43] Liao C, Slipchenko M N, Wang P, et al. Light: Science & Applications, 2015, 4(3): e265.
[44] Weinigel M, Breunig H G, Darvin M E, et al. Physics in Medicine and Biology, 2015, 60(17): 6881.
[45] Wright A J, Poland S P, Girkin J M, et al. Optics Express, 2007, 15(26): 18209.
[46] Lin P, Ni H, Li H, et al. Optics Express, 2020, 28(20): 30210.
[47] Lukic A, Dochow S, Chernavskaia O, et al. Journal of Biophotonics, 2016, 9(1-2): 138.
[48] Lukic A, Dochow S, Bae H, et al. Optica, 2017, 4(5): 496.
[49] Lombardini A, Mytskaniuk V, Sivankutty S, et al. Light: Science & Applications, 2018, 7: 10.
[50] Hirose K, Fukushima S, Furukawa T, et al. APL Photonics, 2018, 3(9): 092407.
[51] Galli R, Uckermann O, Temme A, et al. Journal of Biophotonics, 2017, 10(3): 404.
[52] Veilleux I, Spencer J A, Biss D P, et al. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(1): 10.
[53] Wu W, Li X, Qu J, et al. Journal of Visualized Experiments, 2021, (178): e63411. doi: 10.3791/63411
|
[1] |
YUN Sheng1, 2, ZHANG Yuan1, 4, ZHANG Sheng4, ZHANG Zhi-bin1, 4, DENG Yan-yan1, 2, TIAN Liang3, LIU Zhao-hong1, 2, LIU Shuo1, 2, ZHANG Yong2, WANG Yu-lei1, 2, LÜ Zhi-wei1, 2, XIA Yuan-qin1, 2, 4*. Research Progress of Femtosecond Coherent Anti-Stokes Raman Scattering Spectroscopy Thermometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 901-909. |
[2] |
PAN Ke-yu1, 2, ZHU Ming-yao1, 2, WANG Yi-meng1, 2, XU Yang1, CHI Ming-bo1, 2*, WU Yi-hui1, 2*. Research on the Influence of Modulation Depth of Phase Sensitive
Detection on Stimulated Raman Signal Intensity and
Signal-to-Noise Ratio[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1068-1074. |
[3] |
JIAO Ruo-nan, LIU Kun*, KONG Fan-yi, WANG Ting, HAN Xue, LI Yong-jiang, SUN Chang-sen. Research on Coherent Anti-Stokes Raman Spectroscopy Detection of
Microplastics in Seawater and Sand[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1022-1027. |
[4] |
LI Xiang-zhao1, HOU Guo-hui1,2*, HUANG Zhi-fan1, XIAO Jun-jun2. Coherent Anti-Stokes Raman Scattering Imaging for Small Beads[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3648-3652. |
[5] |
ZHANG Zhen-rong, LI Guo-hua, HU Zhi-yun, WANG Sheng, YE Jing-feng, TAO Bo, SHAO Jun, FANG Bo-lang. Research on Spatial Resolution Adjustable USEDCARS Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(01): 1-4. |
[6] |
YE Ruo-bai1, WU Zhen-hong2, MIAO Xiao-qing1, 2*. In Vivo Spectrofluorimetry of Polypeptide (GPG) Anti-Tumor Activity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(09): 2786-2790. |
[7] |
HOU Guo-hui, CHEN Bing-ling, LUO Teng, LIU Jie, LIN Zi-yang, CHEN Dan-ni*, QU Jun-le*. Experimental Study on Broadband Coherent Anti-Stokes Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 606-610. |
[8] |
YANG Jie1,2, LIU Jin-bo2*, CAO Rui1,2, CAI Hong-xing1, GUO Jing-wei2. Time-Sharing Narrowband CARS Spectroscopy in Olefin Concentration Measurement Applications[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(04): 1037-1041. |
[9] |
LI Ren-bing, SU Tie, ZHANG Long, CHEN Li, CHEN Shuang, LIU Ting-xu . New Implementation Technique of USED Phase Matching for CARS [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(05): 1424-1427. |
[10] |
SHAN Xiao-ning1, MEN Zhi-wei1, ZHOU Mi1, SUN Cheng-lin1, LI Zuo-wei1, WANG Yi-ding2, LI Zhan-long1, 2* . Enhancing Stimulated Raman Scattering of Water and Heavy Water Lattice Vibration by Laser Induced Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(08): 2031-2034. |
[11] |
TAN Yong, HUANG Qiu-shi, SONG Xue-di, CAI Hong-xing, SUN Xiu-ping, Lü Yan-fei, ZHANG Xi-he* . Study of Stimulated Raman Scattering and Four Wave Mixing in an Optical Fiber Combination[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(06): 1451-1455. |
[12] |
HOU Guo-hui, YIN Jun, JING Li-qing, LIU Wei, LIN Zi-yang, NIU Han-ben* . Experimental Study on the Non-Resonant Signal of the CARS Process in Mixture [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(06): 1477-1480. |
[13] |
JING Li-qing, YIN Jun, HOU Guo-hui, LIU Wei, LIN Zi-yang, NIU Han-ben* . High Sensitivity Conherent Anti-Stokes Raman Scattering for Linearly Probing Low Concentration Materials[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(12): 3372-3376. |
[14] |
WAN Hui1, YIN Jun1,2, YU Ling-yao1, LIU Xing1, QU Jun-le1, LIN Zi-yang1*, NIU Han-ben1* . A Method of Obtaining Vibrational Dephasing Time of Molecular Multi-Vibrational Modes Simultaneously[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2011, 31(02): 314-318. |
[15] |
MEN Zhi-wei1, SUN Xiu-ping1, 2, GAO Shu-qin1,ZHANG Xi-he2,WANG Zhao-min2,LI Zuo-wei1* . Temperature Dependence of Additional Peaks Characteristics of Single Mode Silica Fiber Stimulated Raman Scattering [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2009, 29(06): 1566-1569. |
|
|
|
|