|
|
|
|
|
|
Study on the Vibrational Spectra of Pyromorphite From Guilin of Guangxi Province |
QIAN Xue-wen1, LIU Xian-yu1, 2, 3*, LI Jing-jing1, YUAN Ye4 |
1. College of Jewelry,Shanghai Jian Qiao University,Shanghai 201306,China
2. Key Laboratory of Non-Ferrous Metal Oxide Electronic Functional Materials and Devices (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region,Guilin University of Technology, Guilin 541004,China
3. School of Jewelry, City Polytechnic of Shenzhen, Shenzhen 518116,China
4. School of Gemmology,China University of Geosciences (Beijing),Beijing 100083,China
|
|
|
Abstract The pyromorphite in Guilin, Guangxi, has bright colors and complete crystals, favored by mineral and gem collectors. In this paper, six pyromorphite samples from Guilin and Guangxi with different colors were selected. The samples' chemical composition and vibration spectrum were tested by energy-dispersive X-ray fluorescence spectrometer, infrared spectrometer, Raman spectrometer, and X-ray powder diffractometer to explore the relationship between the vibration spectrum and the chemical composition (isomorphism) and crystal structure. The results show that the main chemical element of the samples is Pb, followed by P and Cl. The mid-infrared and Raman spectra mainly characterize the bending and stretching vibrations of PO3-4, in which the bands below 300 cm-1 are related to the lattice vibration. The antisymmetric stretching vibration of AsO3-4 is visible at 882/822 cm-1, and the CO2-3 vibration is related at 1 461 cm-1, indicating that CO2-3 and AsO3-4 replace a small amount of PO3-4 in the structure of Guangxi Guilin pyromorphite. Near-infrared spectroscopy tests show spectral bands related to transition metal ions Fe2+and Cu2+ in the sample, indicating that Fe2+and Cu2+ may simultaneously replace Pb2+ and exist in the crystal structure. The 4 000~8 000 cm-1 region mainly displays phosphate ions, arsenate ions, and their overtone and combination tones, as well as the overtone and combination tones of water molecules, hydroxyl groups, hydroxyl, and metal ions. It is confirmed that crystal, structural, and adsorption water are in the sample, with the channel ion Cl partially replaced by OH. The results of the comprehensive analysis of mid-infrared, near-infrared, and Raman spectra show a wide range of isomorphism in the samples of pyromorphite in Guilin, Guangxi. This phenomenon leads to a decrease in the symmetry of phosphate ions, a distortion of the structure, and a splitting and displacement of the spectral band. Meanwhile, X-ray powder diffraction shows that isomorphism has little effect on the cell parameters a0 and b0, while c0 fluctuates within a small range.
|
Received: 2023-11-23
Accepted: 2024-07-10
|
|
Corresponding Authors:
LIU Xian-yu
E-mail: liuxianyu@gench.edu.cn
|
|
[1] Botto I L, Barone V L, Castiglioni J L, et al. Journal of Materials Science, 1997, 32(24): 6549.
[2] Liu Y, Comodi P, Sassi P. Neues Jahrbuch für Mineralogie-Abhandlungen, 1998, 174(2): 211.
[3] Comodi P, Liu Y. European Journal of Mineralogy, 2000, 12(5): 965.
[4] MA Hong-yan, CUI Da-an, QIN Zuo-lu, et al(马红艳, 崔大安, 秦作路, 等). Acta Mineralogica Sinica(矿物学报), 2006, 26(2): 165.
[5] PENG Jun, WANG Gan-zhen, XU Xiao-hua(彭 君, 王干珍, 徐小华). Mineralogy and Petrology(矿物岩石), 2023, 43(2): 18.
[6] Okudera H. American Mineralogist, 2013, 98(8-9): 1573.
[7] CHEN Xi, XU Xun, QIN Fei, et al(陈 羲, 许 寻, 秦 霏, 等). Nuclear Techniques(核技术), 2019, 42(2): 020101.
[8] Gu T, Qin S, Wu X. Crystals, 2020, 10(12): 1070.
[9] Workman J, Weyer L. Practical Guide to Interpretive Near-Infrared Spectroscopy(近红外光谱解析实用指南). Translated by CHU Xiao-li, XU Yu-peng, TIAN Gao-you(褚小立,许育鹏,田高友, 译). Beijing: Chemical Industry Press(北京: 化学工业出版社), 2009: 1.
[10] Momma K, Izumi F. Journal of Applied Crystallography, 2008, 41(3): 653.
[11] Frost R L, Reddy B J, Palmer S J. Polyhedron, 2008, 27(6): 1747.
[12] Bajda T, Mozgawa W, Manecki M, et al. Polyhedron, 2011, 30(15): 2479.
[13] Farmer V C(法默V C). Infrared Spectroscopy of Mineral(矿物的红外光谱). Beijing: Science Press(北京: 科学出版社), 1982: 304.
[14] Reddy B J, Frost R L, Palmer S J. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2008, 71(2): 430.
[15] ZHOU Ling-di, LIU Yong-kang, ZHOU Guo-fu(周玲棣, 刘永康, 周国富). Acta Mineralogica Sinica(矿物学报), 1999, 19(1): 41.
[16] Frost R L, Palmer S J. Polyhedron, 2007, 26(15): 4533.
[17] Frost R L, Bouzaid J M, Palmer S J. Polyhedron, 2007, 26(13): 2964.
[18] Bartholomäi G, Klee W E. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1978, 34(7-8): 831.
[19] YAN Shou-xun, ZHANG Bing, ZHAO Yong-chao, et al(燕守勋, 张 兵, 赵永超,等). Remote Sensing Technology and Application(遥感技术与应用), 2003,(4): 191.
[20] Burns R G. Mineralogical Applications of Crystal Field Theory(晶体场理论的矿物学应用). Translated by REN Jue, GUO Qi-ti(任 觉, 郭其悌, 译). Beijing: Science Press(北京: 科学出版社), 1977. 105.
[21] Frost R L, Reddy B J, Wain D L, et al. Journal of Near Infrared Spectroscopy, 2006, 14(5): 317.
[22] Frost R L, Reddy B J, Hales M C, et al. Journal of Near Infrared Spectroscopy, 2008, 16(2): 75.
[23] Frost R L, Reddy B J, Keeffe E C. Journal of Near Infrared Spectroscopy, 2008, 16(4): 399.
[24] SONG Hua-ling, GUO Xue-fei, TAN Hong-lin, et al(宋华玲, 郭雪飞, 谭红琳,等). Bulletin of the Chinese Ceramic Society(硅酸盐通报), 2019, 38(11): 3592.
[25] ZHONG Qian, WU Qiong, LIAO Zong-ting, et al(钟 倩, 吴 穹, 廖宗廷,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2018, 38(6): 1786.
[26] XING Ying-ying, QI Li-jian(邢莹莹, 亓利剑). Laser & Optoelectronics Progress(激光与光电子进展), 2019, 56(2): 023003.
[27] GUO Xue-fei, SONG Hua-ling, LONG Quan-shu, et al(郭雪飞, 宋华玲, 龙泉树, 等). Journal of Kunming University of Science and Technology(Natural Science)[昆明理工大学学报(自然科学版)], 2019, 44(3): 22.
|
[1] |
LIU Jia, ZHENG Ya-long, WANG Cheng-bo, YIN Zuo-wei*, PAN Shao-kui. Spectra Characterization of Diaspore-Sapphire From Hotan, Xinjiang[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 176-180. |
[2] |
LIU Liang-yu, YIN Zuo-wei*, XU Feng-shun. Spectral Characteristics and Genesis Analysis of Gem-Grade Analcime From Daye, Hubei[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2799-2804. |
[3] |
LIN Jing-tao, XIN Chen-xing, LI Yan*. Spectral Characteristics of “Trapiche-Like Sapphire” From ChangLe, Shandong Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1199-1204. |
[4] |
MA Ping1, 2, Andy Hsitien Shen1*, LUO Heng1, ZHONG Yuan1. Study on Laser Raman Spectrum Characteristics of Jadeite From Common Origins[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3441-3447. |
[5] |
FU Xing-hu, ZHAO Fei, WANG Zhen-xing, LU Xin, FU Guang-wei, JIN Wa, BI Wei-hong. Quantitative Analysis of Goat Serum Protein Content by Raman Spectroscopy Based on IABC-SVR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 540-545. |
[6] |
CHEN Quan-li1, WANG Hai-tao2*, LIU Xian-yu3, QIN Chen1, BAO De-qing1. Study on Gemology Characteristics of the Turquoise from Mongolia[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(07): 2164-2169. |
[7] |
LI Jia-jia1*, LIU Jing-li1, JIN Ru-yi1, TANG Yu-ping1, YUE Shi-jun1,WANG Li-wen2, LONG Xu1, ZHANG Guang-hui1, MENG Qing-hua1, LI Rong-xi3. Quantitative Measurement of Artemisinin Content in Chinese Traditional Compound Medicine by Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(08): 2403-2408. |
[8] |
ZHANG Yan-jun1, 2, ZHANG Fang-cao1, FU Xing-hu1*, JIN Pei-jun1, HOU Jiao-ru1. Detection of Fatty Acid Content in Mixed Oil by Raman Spectroscopy Based on ABC-SVR Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(07): 2147-2152. |
[9] |
LIU Chun-hao, GUO Jin-jia*, YE Wang-quan, LIU Qing-sheng, LI Nan, ZHENG Rong-er. Development of a Combined Underwater LIBS-Raman Detection System and a Preliminary Test[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(12): 3753-3757. |
[10] |
XI Shi-chuan1, 3, ZHANG Xin1, 2, 3*,DU Zeng-feng1, LUAN Zhen-dong1, LI Lian-fu1, 3, WANG Bing1, LIANG Zheng-wei1, 3, LIAN Chao1, YAN Jun1. The Application of Raman Shift of Sulfate in Temperature Detection of Deep-Sea Hydrothermal Fluid[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(11): 3390-3394. |
[11] |
ZHONG Qian1, 2, 3, WU Qiong2, 3, LIAO Zong-ting1, 2, 3*, ZHOU Zheng-yu1, 2, 3. Vibrational Spectral Characteristics of Ensignia Actinolite Jade from Guangxi, China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1786-1792. |
[12] |
ZHAO Ling-wei1, 2, CHEN Hai-long3, ZHAO Hong-xia1, DONG Jun-qing1, LI Qing-hui1*. A Scientific Research of the Painted Potteries of the Yangshao Culture from the Miao-Di-Gou Site[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1420-1429. |
[13] |
WANG Ya-wei1, 2, DONG Jun-qing1, LI Qing-hui1*. Scientific Analysis of Garnet Beads Unearthed from Tomb Dated to Han Dynasty in Jiuzhiling, Hepu, Guangxi[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(01): 104-110. |
[14] |
BU Tian-jia1, CHENG Peng2*, GUO Liang2*, SU Yan2, XU Wei-qing1, ZHAO Bing1, SUN Wan-chen2. Laser Spontaneous Raman Scattering Based on Multi-Channel Measurement of Mole Fraction of Air[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2974-2978. |
[15] |
GUO Gui-juan1, ZHANG De-hui1*, LI Sheng-rong1, XIE Chao2, CUI Yue-ju2*. Study on Raman Spectrum Characteristics of Pyrite in the Xishimen Gold Deposit in Lingshou,Hebei[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(08): 2435-2439. |
|
|
|
|