|
|
|
|
|
|
Research Progress of Tumor Diagnosis and Therapy Based on
Terahertz Technology |
LIU Heng, SHEN Li-ran, GUAN Han-xiao, CAO Yu-qi*, HUANG Ping-jie, HOU Di-bo, ZHANG Guang-xin |
State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
|
|
|
Abstract The diagnosis and treatment of tumors have been a hot medical research area for a long time. Terahertz technology has great potential for application in the biomedical field due to its low photon energy, label-free, and high temporal resolution. This paper introduces the application of terahertz technology in tumor diagnosis and treatment. Terahertz tumor diagnosis is mainly based on terahertz spectroscopy and imaging technology. By using terahertz spectroscopy to obtain spectral feature information, with the combination of advanced pattern recognition and machine learning algorithms to extract high-dimensional features, tumors can be detected and diagnosed. The imaging technique mostly utilizes the differences in components between tumor cells and tissues to distinguish and identify tumors. The research on terahertz technology in tumor diagnosis is first introduced in three dimensions: biomolecules, cells, and tissues. The research on biomolecules focuses on tumor markers such as proteins, nucleic acids, amino acids, and glycans. Advanced research in cellular detection focuses on identifying tumor cells and detecting blood cells. Regarding tissue, the detection and diagnosis of cancer tissues with different types is presented in two main dimensions: imaging and terahertz time-domain spectroscopy. The research on tumor therapy based on terahertz technology emphasizes the positive effects, including biological effects on ablation of tumor cells and modulation of gene expression to improve body functions. Finally, the current limitations and prospects of terahertz technology in biomedical applications are discussed to provide insights for future research on terahertz in related fields.
|
Received: 2023-11-27
Accepted: 2024-02-25
|
|
Corresponding Authors:
CAO Yu-qi
E-mail: yuqicao@zju.edu.cn
|
|
[1] Sun Qiushuo, He Yuezhi, Liu Kai, et al. Quantitative Imaging in Medicine and Surgery, 2017, 7(3): 345.
[2] Dhillon S S, Vitiello M S, Linfield E H, et al. Journal of Physics D: Applied Physics, 2017, 50(4): 043001.
[3] Mittleman D M. Optics Express, 2018, 26(8): 9417.
[4] Li Han, Zhang Kun, Zhou Qian, et al. International Journal of Clinical and Experimental Medicine, 2017, 10(2): 3766.
[5] Zhong Shuncong. Frontiers of Mechanical Engineering, 2019, 14(3): 273.
[6] D'Arco A, Di Fabrizio M, Dolci V, et al. Condensed Matter, 2020, 5(2): 25.
[7] Markelz A G, Mittleman D M. ACS Photonics, 2022, 9(4): 1117.
[8] Zhang Yujie, Sun Tao, Jiang Chen, et al. Acta Pharmaceutica Sinica B, 2018, 8(1): 34.
[9] Miyata T, Fujiwara Y, Nishijima K, et al. Journal of Medical Case Reports, 2019, 13(1): 66.
[10] Luo Guopei, Jin Kaizhou, Deng Shengming, et al. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875(2): 118409.
[11] Huang Pingjie, Huang Zhangwei, Lu Xiaodong, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 229(1): 117948.
[12] Lin Shangjun, Xu Xinlong, Hu Fangrong, et al. IEEE Journal of Selected Toptics in Quantum Electronics, 2021, 27(4): 6900207.
[13] Zeng Qingpeng, Liu Wentao, Lin Shangjun, et al. Sensors and Actuators B: Chemical, 2022, 355: 131337.
[14] Lin Shangjun, Wang Yuanli, Peng Zhenyun, et al. Talanta, 2022, 248: 123628.
[15] Li Dongxia, Zeng Lizhen, Wang Yuanli, et al. Applied Optics, 2022, 61(16): 4817.
[16] Xue Zhenrui, Mao Ping, Peng Ping, et al. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1119694.
[17] Zeng Huangcheng, Hu Jialin, Bai Jingwen, et al. Molecular Imaging and Biology, 2019, 21(2): 219.
[18] Cheon H, Paik J H, Choi M, et al. Scientific Reports, 2019, 9: 6413.
[19] Yu Miao, Yan Shihan, Sun Yongqian, et al. Sensors, 2019, 19(5):1148.
[20] TANG Ming-jie, YAN Shi-han, ZHANG Ming-kun, et al(汤明杰, 颜识涵, 张明焜, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2020, 40(8): 2388.
[21] Zhan Xinyu, Yang Sha, Huang Guorong, et al. Biosensors and Bioelectronics, 2021, 188: 113314.
[22] Fang Jie, Yuan Changjing, Luo Xizi, et al. Talanta, 2024, 266: 125034.
[23] Chen Hua, Chen Xiaofeng, Ma Shihua. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39(4): 399.
[24] CHEN Tao, CAI Zhi-hua, HU Fang-rong, et al(陈 涛, 蔡治华, 胡放荣, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2019, 39(4): 686.
[25] Zhou Jie, Wang Xuemei, Wang Yunxia, et al. Talanta, 2021, 228: 122213.
[26] YE Hui, XI Ming-rong, CAO Han-yu, et al(叶 麾, 郄明蓉, 曹寒雨, 等). Opto-Electronic Engineering(光电工程), 2018, 45(5): 170528-1.
[27] Hassan E M, Mohameda A, Derosa M C, et al. Sensors and Actuators B: Chemical,2019, 287: 595.
[28] Yoshida Y C, Ding Xue, Iwatsuki K, et al. Sensors, 2021, 21(22): 7631.
[29] Zhu Mei, Zhang Lian, Ma Shengqian, et al. Materials Research Express, 2019, 6(4): 045805.
[30] Shi Wei, Wang Yuezheng, Hou Lei, et al. Journal of Biophotonics, 2021, 14(1): e202000237.
[31] Yang Xiaoyue, Li Mei, Peng Qi, et al. Journal of Biophotonics,2022, 15(1): e202100241.
[32] Nourinovin S, Rahman M M, Philpott M P, et al. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 6010009.
[33] Smolyanskaya O A, Kravtsenyuk O V, Panchenko A V, et al. Quantum Electronics, 2017, 47(11): 1031.
[34] Konnikova M R, Cherkasova O P, Nazarov M M, et al. Biomedical Optics Express, 2021, 12(2): 1020.
[35] Kruchinina M V, Gromov A A, Kruchinin V N, et al. Optical Engineering, 2021, 60(8): 082003.
[36] Kumar A, Verma P, Jindal P. Optical and Quantum Electronics,2021,53: 165.
[37] Castro-Camus E, Koch M,Mittleman D M. Applied Physics B: Lasers and Optics, 2022, 128(1): 12.
[38] Li Dandan, Yang Zhongbo, Fu Ailing, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 234: 118229.
[39] Grigorev R, Kuzikova A, Demchenko P, et al. Materials, 2020, 13(1): 85.
[40] Liu Wenquan, Zhang Rui, Ling Yu, et al. Biomedical Optics Express, 2020, 11(2): 971.
[41] Cassar Q, Caravera S, Macgrogan G, et al. Scientific Reports, 2021, 11(1): 6457.
[42] Chen Yong, Li Dan, Liu Yaling, et al. Journal of Biophotonics, 2023, 16(12): e202300193.
[43] Doradla P, Joseph C, Giles R H. World Journal of Gastrointestinal Endoscopy, 2017, 9(8): 346.
[44] Cassar Q, Al-Ibadi A, Mavarani L, et al. Biomedical Optics Express, 2018, 9(7): 2930.
[45] EL-Shenawee M, Vohra N, Bowman T, et al. Biomedical Spectroscopy and Imaging, 2019, 8(1-2): 1.
[46] Wu Limin, Xu Degang, Wang Yuye, et al. Neurophotonics, 2020, 7(2): 025005.
[47] Yang Shengxin, Ding Liang, Wang Shuai, et al. Physical Review Applied, 2023, 19: 034033.
[48] PENG Xiao-yu, ZHOU Huan(彭晓昱, 周 欢). Acta Physica Sinica(物理学报), 2021, 70(24): 240701.
[49] Borovkova M, Serebriakova M, Fedorov V, et al. Biomedical Optics Express, 2017, 8(1): 273.
[50] Rao Xin, Chen Xiaodong, Zhou Jun, et al. Electronics, 2020, 9(6): 1053.
[51] Amini T, Jahangiri F, Ameri, Z, et al. Journal of Lasers in Medical Sciences, 2021, 12(1): e92.
[52] Son J, Cheon H. Proc. SPIE, Next-Generation Spectroscopic Technologies XIII, 2020, 11390: 1139002.
[53] Cheon H, Yang H J, Choi M, et al. Biomedical Optics Express, 2019, 10(10): 4931.
[54] Nikitkina A I, Bikmulina P, Gafarova E R, et al. Journal of Biomedical Optics, 2021, 26(4): 043005.
[55] HU Zhuo-yao, HOU Ji-hua, LI Lin-chang, et al(胡卓瑶, 侯吉华, 李林昌, 等). China Journal of Traditional Chinese Medicine and Pharmacy(中华中医药杂志), 2021,36(6): 3555.
[56] Sitnikov D, Revkova V, Ilina I, et al. International Journal of Molecular Sciences, 2023, 24: 6558.
[57] Bandyopadhyay A, Sengupta A. IETE Technical Review, 2022, 39(2): 471.
[58] Sun Fengshan, Fan Mengbao, Cao Binghua, et al. IEEE Transactions on Industrial Informatics, 2023, 19(7): 8328.
[59] Huang Yuxin, Singh R, Xie Lijuan, et al. Applied Sciences-Basel, 2020, 10(14): 4688.
[60] Afsah-Hejri L, Hajeb P, Ara P, et al. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(5): 1563.
|
[1] |
LI Jing1,2, LU Xu-tao1,2, Lü Hai-feng1,2, SUN Yun-qiang1,2 . Study on the Design of Explosive (HNS) Content Analysis System Based on THz Spectrum Monomer [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(11): 3506-3509. |
[2] |
GAO Xiu-xiang1,XU Yi-zhuang1*,ZHAO Mei-xian2,QI Jian1,LI Hui-zhen1,WU Jin-guang1. Progress in Nuclear Magnetic Resonance Spectroscopy for Early Cancer Diagnosis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2008, 28(08): 1942-1950. |
[3] |
YU Jia, MENG Ji-wu, LI Ying, MA Jun,ZHENG Rong-er . Fluorescence Study by Simulating the Metabolizability of Carotenoid and Porphyrin during Cancer Development [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2004, 24(08): 981-983. |
|
|
|
|