|
|
|
|
|
|
Estimation and Correction Method of Long-Term Radiometric Degradation of FY-3D/MERSI-Ⅱ Reflective Solar Bands |
WANG Ling1, 2, 3, HU Xiu-qing1, 2, 3*, ZHANG Bei1, 2, 3, XU Han-lie1, 2, 3, HE Xing-wei1, 2, 3, QI Cheng-li1, 2, 3, ZHANG Xiao-han1, 2, 3, SI Yi-dan1, 2, 3, XU Na1, 2, 3, CHEN Lin1, 2, 3 |
1. National Satellite Meteorological Center (National Center for Space Weather), China Meteorological Administration, Beijing 100081, China
2. Innovation Center for FengYun Meteorological Satellite (FYSIC), China Meteorological Administration, Beijing 100081, China
3. Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, China Meteorological Administration, Beijing 100081, China
|
|
|
Abstract The estimation and correction of long-term radiometric degradation in remote sensing instruments are crucial for improving the stability and accuracy of satellite remote sensing applications. This study used long-term observation data of FY-3D/MERSI-Ⅱ over stable targets in deserts and DCC (Deep Convective Clouds) to establish a function relationship model between instrument radiation response and time. We further obtained estimates of the best radiometric response degradation and radiometric calibration coefficient using the inverse variance weighted average method to integrate the results of two stable targets. The radiometric degradation tracking resultsshow that from the beginning of FY-3D/MERSI-Ⅱ's in-orbit to September 2022, there is significant degradation in three blue light bands (band 1, bands 8—9 with wavelengths less than 500 nm) and four near-infrared-shortwave infrared bands (bands 5—7, band 19 with wavelengths greater than 1 000 nm), with annual degradation rates ranging from 1.47% to 4.32%. Precision testing of L1 products reveals that the operational calibration bias of seven significantly degraded Bands exceeded ±5%, with bands 5 and 8 having the most significant bias, about -20%. After applying the radiometric calibration coefficient sequence obtained in this study, the radiometric calibration precision remains stable over time, with calibration bias maintained within ±3%. The accuracy validation results of L2 products show that the use of newly obtained calibration coefficients has improved product accuracy compared to operational products. These results indicate the effectiveness of the radiometric calibration method established in this study.
|
Received: 2023-06-25
Accepted: 2024-03-29
|
|
Corresponding Authors:
HU Xiu-qing
E-mail: huxq@cma.cn
|
|
[1] Xu N, Niu X H, Hu X Q, et al. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8):4866.
[2] Wang L, Hu X Q, Xu N, et al. Advances in Atomospheric Sciences, 2021, 38(8): 1351.
[3] Hu X, Liu J, Sun L, et al. Canadian Journal of Remote Sensing, 2010, 36: 566.
[4] SUN Ling, GUO Mao-hua, XU Na, et al(孙 凌,郭茂华,徐 娜,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2012, 32(7): 1869.
[5] Sun L, Hu X Q, Guo M H, et al. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(12):4929.
[6] WANG Ling, HU Xiu-qing, CHEN Lin, et al(王 玲, 胡秀清, 陈 林,等). National Remote Sensing Bulletin(遥感学报),2017, 21(6):892.
[7] XU Na, HU Xiu-qing, CHEN Lin, et al(徐 娜, 胡秀清, 陈 林, 等). Acta Optica Sinica(光学学报),2015, 35(12): 1228001.
[8] ZHANG Bei, HU Xiu-qing, ZHOU Wei-wei, et al(张 北, 胡秀清, 周为伟, 等). Acta Optica Sinica(光学学报),2023, 43(18): 1828003.
[9] Heidinger A K, Sullivan J T, Nagaraja Rao C R. International Journal of Remote Sensing, 2003, 24(18): 3635.
[10] Smith D L, Mutlow C T, Nagaraja Rao C R. Applied Optics, 2002, 41:515.
[11] Wu A, Xiong X, Cao C, et al. Proc. SPIE, 2008, 7081: 708113.
[12] Chen L, Hu X Q, Xu N, et al. Remote Sensing, 2013, 5(12):6958.
[13] Cosnefroy H, Leroy M, Briottet X. Remote Sens. Environ., 1996, 58:101.
[14] Teillet P M, Barsi J A, Chander G, et al. Proc. of SPIE, 2007, 6677: 667705.
[15] Teillet P M,Chander G. Canadian Journal of Remote Sensing, 2010, 36(5):437.
[16] Helder D L, Basnet B, Morstad D L. Canadian Journal of Remote Sensing, 2010, 36:527.
[17] Bhatt R, Doelling D R, Scarino B, et al. Proc. SPIE,2013, 8866: 886601(doi: 10.1117/12.2024271).
[18] Bhatt R, Doelling D R, Wu A, et al. Remote Sensing, 2014, 6:2809.
[19] Kim W, Cao C Y, Liang S L, et al. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4):793.
[20] Doelling D R, Morstad D L, Scarino B R, et al. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51:1147.
[21] Hu Y, Wielicki B A, Yang P, et al. IEEE Transactions on Geoscience and Remote Sensing,2004, 42:2594.
[22] Wu A, Xiong X, Cao C, et al. In: Proceedings of SPIE, 2008, 7081: 708113.
[23] Xiong X,Butler J J. Remote Sensing, 2020, 12:2523.
[24] Choi T, Cao C, Shao X, et al. Remote Sensing, 2022, 14:3367.
[25] YANG Lei-ku, HU Xiu-qing, WANG Han, et al(杨磊库,胡秀清,王 涵, 等). National Remote Sensing Bulletin(遥感学报), 2022, 26(5): 923.
[26] Zhang X H, Shi C, Si Y, et al. Remote Sensing, 2023, 15: 5650.
|
[1] |
YIN Jun-yue1, HE Rui-rui2, ZHAO Feng-jun3*, YE Jiang-xia1*. Research on Forest Fire Monitoring Based on Multi-Source Satellite
Remote Sensing Images[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 917-926. |
[2] |
SUN Ling1, 2, GUO Mao-hua3, XU Na1, 2, ZHANG Li-jun1, 2, LIU Jing-jing1, 2, HU Xiu-qing1, 2, LI Yuan1, 2, RONG Zhi-guo1, 2, ZHAO Ze-hui4. On-Orbit Response Variation Analysis of FY-3 MERSI Reflective Solar Bands Based on Dunhuang Site Calibration [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(07): 1869-1877. |
|
|
|
|