光谱学与光谱分析 |
|
|
|
|
|
Determination of Trace Element Silver in Animal Serum, Tissues and Organs by Microwave Digestion-ICP-MS |
YUAN Jun-jie1, XIE You-zhuan1*, HAN Chen1, SUN Wei1, ZHANG Kai1, ZHAO Jie1, LU Xiao2, LU Jian-xi2, REN Wei3 |
1. Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China 2. Shanghai Bio-lu Biomaterials Company Limited, Shanghai 201114, China 3. Gratech Company Limited, Shanghai 201210, China |
|
|
Abstract Nowadays, the silver is widely used in the biological field and its biological safety catches great attention. It is important to know the distribution of silver ions within the biological organism and the toxic threshold concentration in the tissue. Therefore, a highly sensitive method for measurement of trace amount of silver ion in the medical biological samples is needed. With its high sensitivity for detection of metal ions, inductively coupled plasma mass spectrometry (ICP-MS) method is well suited for quantification of trace amount of silver ion in such samples, but method development is still in its infancy. Consequently, a simple and convenient method for determination of trace amount of silver in the animal serum, tissues or organs was developed, in which the samples were subjected to the microwave digestion, followed by the ICP-MS analysis. To begin with, the samples of serum, muscle, bone marrow, bone, heart, liver, spleen, and kidney were sequently processed in 5 mL of HNO3 and 2 mL of H2O2 solution. Then the samples were completely digested by microwave with the power of 2 000 watts. The temperature was raised gradually by 3-step program. Moreover, the data achieved were reproducible and the method was time saving and especially for large amounts of sample processing. Then the digested solutions were diluted to constant volume. Finally, the concentration of 107Ag in the samples was analyzed by the method of ICP-MS under the optimized conditions. Element yttrium (Y) was used as the internal standard to compensate for matrix suppression effect and improve the accuracy of measurement. For one thing, the analytical results showed that the detection limit of the trace element 107Ag was 0.98 μg·kg-1, and furthermore, the correlation coefficient of standard curve was 0.999 9. For another thing, the recovery rate of the silver element ranged from 98% to 107%, which was calculated according to measured quantity before adding standard, adding standard and measured quantity after adding standard. At the same time, the relative standard deviation (RSD) of the method was in the range of 2.0%~4.3%. The concentrations of element silver in animal serum, tissues and organs were determined by the aboved method. The obtained results showed that silver ions were mainly accumulated in the liver after they were intaken into the body. The results suggested that the microwave digestion-ICP-MS method could accurately determine the trace element Ag in the body. The method developed has good feasibility and is suitable for the determination of trace element Ag in various types of medical and biological samples, especially for large quantities of biological samples. The process has the advantages of easy sample processing and it is simple and convenient. In addition, the accurate results could be obtained in a short time with high sensitivity. Last but not least, the method provides the guidance for the determination of trace elements in other biological samples.
|
Received: 2013-10-23
Accepted: 2014-01-22
|
|
Corresponding Authors:
XIE You-zhuan
E-mail: youzhuan.xie@gmail.com
|
|
[1] Wasiak J, Cleland H, Campbell F, et al. Cochrane Database Syst. Rev., 2013, 3: CD002106. [2] Winkler K M, Woernle C M, Seule M, et al. Neurocrit Care, 2013, 18(2): 161. [3] Mijnendonckx K,Leys N,Mahillon J,et al. Biometals,2013,26(4): 609. [4] SUN Yu-an, XU Zheng-bo, WANG Guo-qing, et al(孙雨安,徐政波,王国庆,等). Chinese Journal of Spectroscopy Laboratory(光谱实验室),2011,28(6):2815. [5] Enamorado-Báez S M, Abril J M, Gómez-Guzmán J M. ISRN Analytical Chemistry, Volume 2013(2013), Article ID 851713. [6] SHI Xiao-guang,ZHAO Zhuang,LU Min-yi,et al(施晓光,赵 庄,陆敏仪,等). China Pharmacist(中国药师),2013,16(4):494. [7] ZHAN Xiang-juan,ZHANG Ni,LIU Liang,et al(展向娟,张 尼,刘 亮,等). Chinese Journal of Analysis Laboratory(分析试验室),2013, 32(1):106. [8] SUN Yu-qing,HU Yu-zhu(孙毓庆,胡育筑). Analytical Chemistry(分析化学). Beijing:Science Press(北京:科学出版社),2011. 195. [9] de Laeter J R,Bhlke J K,De P Bièvre,et al. Pure and Applied Chemistry,2000,75(6):683. [10] Loeschner K,Navratilova J,Kobler C,et al. Anal. Bioanal. Chem.,2013,405(25):8185. [11] CHENG Yong,YUAN Jin-hong,XIAO Jun,et al(成 勇,袁金红,肖 军,等). Chinese Journal of Inorganic Chemistry Analysis(中国无机分析化学),2012,2(1):51. [12] ZHANG Dan,ZOU Xiang-yu,XU Jian,et al(张 丹,邹向宇,徐 健,等). Journal of Shanghai Jiaotong University(Medical Science)(上海交通大学学报·医学版),2012, 28(10):1347. |
[1] |
ZHANG Yu-hui1, 2, DING Yong-kang3, PEI Jing-cheng1, 2*, GU Yi-lu1, 2, YU Min-da1, 2. Chemical Constituents and Spectra Characterization of Monocrystal
Rhodonite From Brazil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3504-3508. |
[2] |
WANG Yu-chen1, 2, KONG Ling-qin1, 2, 3*, ZHAO Yue-jin1, 2, 3, DONG Li-quan1, 2, 3*, LIU Ming1, 2, 3, HUI Mei1, 2. Hyperspectral Reconstruction From RGB Images for Tissue Oxygen
Saturation Assessment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3193-3201. |
[3] |
YANG Jing1, LI Li1, LIANG Jian-dan1, HUANG Shan1, SU Wei1, WEI Ya-shu2, WEI Liang1*, XIAO Qi1*. Study on the Interaction Mechanism Between Thiosemicarbazide Aryl Ruthenium Complexes and Human Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2761-2767. |
[4] |
TANG Yan1, YANG Yun-fan1, HU Jian-bo1, 2, ZHANG Hang2, LIU Yong-gang3*, LIU Qiang-qiang4. Study on the Kinetic Process and Spectral Properties of the Binding of Warfarin to Human Serum Protein[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2099-2104. |
[5] |
CHENG Chang-hong1, XUE Chang-guo1*, XIA De-bin2, TENG Yan-hua1, XIE A-tian1. Preparation of Organic Semiconductor-Silver Nanoparticles Composite Substrate and Its Application in Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2158-2165. |
[6] |
SUN Da-wei1, 2, 3, DENG Jun1, 2*, JI Bing-bing4. Study on the Preparation Mechanism of Steel Slag-Based Biomass Activated Carbon by Special Steel Slag-Discard Walnut Shells Based on ICP-MS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2308-2312. |
[7] |
CHEN Dong-ying1, 2, ZHANG Hao1, 2*, ZHANG Zi-long1, YU Mu-xin1, CHEN Lu3. Research on the Origin Traceability of Honeysuckle Based on Improved 1D-VD-CNN and Near-Infrared Spectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1471-1477. |
[8] |
LI Yuan-jing1, 2, CHEN Cai-yun-fei1, 2, LI Li-ping1, 2*. Spectroscopy Study of γ-Ray Irradiated Gray Akoya Pearls[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1056-1062. |
[9] |
SUN Zhi-ming1, LI Hui1, FENG Yi-bo1, GAO Yu-hang1, PEI Jia-huan1, CHANG Li1, LUO Yun-jing1, ZOU Ming-qiang2*, WANG Cong1*. Surface Charge Regulation of Single Sites Improves the Sensitivity of
Raman Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1075-1082. |
[10] |
BI Yan-qi1, 2 , YANG Ying-dong3, DU Jing4, TANG Xiang5, LUO Wu-gan1, 2*. A Study on Mineral Material Sources of Multi-Style Bronzes Collected by Cultural Relic Administration Center of Huili County, Sichuan Province With MC-ICP-MS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1140-1146. |
[11] |
REN Li-lei, PENG Yu-ling, WANG Shu-jun*, ZHANG Cheng-gen, CHEN Yu, WANG Xin-tong, MENG Xiao-ning. Fluorescence Spectroscopy for Studies on the Interaction Between Three Metalloporphyrins With Human Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 806-813. |
[12] |
ZHANG Bao-ping1, NING Tian1, ZHANG Fu-rong1, CHEN Yi-shen1, ZHANG Zhan-qin2, WANG Shuang1*. Study on Raman Spectral Characteristics of Breast Cancer Based on
Multivariable Spectral Data Analysis Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 426-434. |
[13] |
LI Jin-zhi1, LIU Chang-jin1, 4*, SHE Zhi-yu2, ZHOU Biao2, XIE Zhi-yong2, ZHANG Jun-bing3, JIANG Shen-hua2, 4*. Antiglycation Activity on LDL of Clove Essential Oil and the Interaction of Its Most Abundant Component—Eugenol With Bovine Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 324-332. |
[14] |
WANG Zi-min1, MAO Xiao-tian1, YIN Zuo-wei1*, CHEN Chang2, CHENG Tian-jia1. Study on the Spectral Characteristics and the Color-Change Effect of Spinel[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3541-3545. |
[15] |
JUMAHONG Yilizhati1, 2, TAN Xi-juan1, 2*, LIANG Ting1, 2, ZHOU Yi1, 2. Determination of Heavy Metals and Rare Earth Elements in Bottom Ash of Waste Incineration by ICP-MS With High-Pressure Closed
Digestion Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3168-3173. |
|
|
|
|