1. 内蒙古农业大学生态环境学院,呼和浩特 内蒙古 010019 2. Chair of Plant Nutrition, Department of Plant Sciences, Technical University of Munich, Emil-Ramann-Str. 2, D-85350 Freising-Weihenstephan, Germany
Study on the Estimation of Nitrogen Content in Wheat and Maize Canopy Based on Band Optimization of Spectral Parameters
LI Dan1, LI Fei1*, HU Yun-cai2, Mistele Bodo2, Urs Schmidhalter2
1. College of Ecology and Environmental Science, Inner Mongolia Agricultural University, Huhhot 010019, China 2. Chair of Plant Nutrition, Department of Plant Sciences, Technical University of Munich, Emil-Ramann-Str. 2, D-85350 Freising-Weihenstephan, Germany
Abstract:Nitrogen fertilizer plays a crucial role in keeping food production in pace with population growth. However, the exceeding application of nitrogen fertilizer causes environmental risks. Timely and accurate quantification of canopy nitrogen content in crops is important for the rational application of nitrogen fertilizer and reduction environmental risks. The current research aimed to remotely estimate canopy nitrogen content in winter wheat and summer maize. Experiments with different N rates for different cultivars of wheat and maize were conducted in southeast Germany and in the North China Plain from 2008 to 2011. The results showed that, compared with traditional red light based spectral parameters, optimized spectral parameters significantly improved the prediction capacity, overcoming saturation problem in deriving canopy nitrogen content of wheat and maize. Band combination of optimized parameters varied with the difference in species and canopy structure of crops. The optimized bands concentrated on 730~760 and 760~800 nm. The best performing spectral parameter was Rλ766/Rλ738-1 for maize, Rλ796/Rλ760-1 for wheat and Rλ876/Rλ730-1 for wheat and maize combination. The validation results further confirmed that the optimized spectral parameters had the lowest predictive error, indicating that optimized spectral indices could estimate canopy nitrogen content of crops. In conclusion, the band optimization of spectral parameters is a promising approach to derive canopy N content in wheat and maize. The findings from this study may be useful for designing improved nitrogen diagnosis systems and for enhancing the applications of satellite-based sensors.
李 丹1,李 斐1*,胡云才2,Mistele Bodo2,Urs Schmidhalter2 . 基于光谱指数波段优化算法的小麦玉米冠层含氮量估测 [J]. 光谱学与光谱分析, 2016, 36(04): 1150-1157.
LI Dan1, LI Fei1*, HU Yun-cai2, Mistele Bodo2, Urs Schmidhalter2 . Study on the Estimation of Nitrogen Content in Wheat and Maize Canopy Based on Band Optimization of Spectral Parameters . SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(04): 1150-1157.
[1] Smil V. AMBIO, 2002, 31: 126. [2] ZHENG Wen-gang, SUN Gang, SHEN Chang-jun, et al(郑文刚,孙 刚,申长军,等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2010, 26(3): 178. [3] Cui Z L, Zhang F S, Chen X P, et al. Field Crops Res., 2008, 105: 48. [4] Galloway J N, Dentener F J. Biogeochemistry, 2004, 70: 153. [5] GONG Wei, YAN Xiao-yuan, WANG Jing-yan, et al(龚 伟,颜晓元,王景燕,等). Soil(土壤), 2011, 43(3): 336. [6] Chen X P, Zhang F S, Rmheld V, et al. Nutrient Cycling in Agroecosystems, 2006, 74: 91. [7] GUO Jian-hua, ZHAO Chun-jiang, WANG Xiu, et al(郭建华,赵春江,王 秀,等). Chinese Journal of Soil and Fertilizer(中国土壤与肥料), 2008, 4: 10. [8] ZHONG Xu-hua, HUANG Nong-rong, ZHENG Hai-bo, et al(钟旭华,黄农荣,郑海波,等). Chinese Agricultural Science Bulletin(中国农学通报), 2006, 22(10): 147. [9] SHI Ji-yong, ZOU Xiao-bo, ZHAO Jie-wen, et al(石吉勇,邹小波,赵杰文,等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2011, 27(8): 283. [10] Hatfield J L, Gitelson A A, Schepers J S, et al. Agronomy Journal,2008, 100: 117. [11] Shanahan J F, Kitchen N R, Raun W R, et al. Computers and Electronics in Agriculture, 2007, 61: 51. [12] Sripada P V, Heiniger R W, White J G, et al. Agronomy Journal, 2006, 98: 968. [13] Zhang J, BlackmerA M, Ellsworth J W, et al. Agronomy Journal, 2008, 100: 543. [14] Steele M R, Gitelson A A, Rundquist D C. Agronomy Journal, 2008, 100:779. [15] Erdle K, Mistele B, Schmidhalter U. Field Crops Research, 2011, 124:74. [16] Li Fei, Mistele Bodo, Hu Yuncai, et al. Field Crops Research,2012, 138:21. [17] Haboudaneb D, Tremblay N, Miller J R, et al. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46: 423. [18] Pinter P J, Hatfield J L, Schepers J S, et al. Photogrammetric Engineering & Remote Sensing, 2003, 69:647. [19] Haboudane D, Miller J R, Tremblay N, et al. Remote Sensing of Environment, 2002, 81: 416. [20] Eitel J U H, Long D S, Gessler P E, et al.Agronomy Journal, 2008, 100: 1694. [21] Flowers M, Weisz R, Heiniger R.Agronomy Journal, 2003,95: 1189. [22] Lifei Mistele B, Hu Yuncai, et al. European Journal of Agronomy, 2014, 52: 198. [23] Li Fei, Mistele B, Hu Yuncai, et al. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92: 112. [24] Gitelson A A, Vina A, Ciganda V, et al. Geophysical Research Letters, 2005, 32(8): 93. [25] Ciganda V, Gitelson A, Schepers J. Journal of Plant Physiology, 2008, 166:157. [26] Gitelson A A, Dall’Olmo G, Moses W M, et al. Remote Sensing of Environment, 2008, 112(9): 3582. [27] Sun Deyong, Li Yunmei, Le Chengfeng, et al. Remote Sensing of Environment, 2013, 134: 92. [28] Chen Jun, Quan Wenting, Wen Zenhe, et al. China Environmental Earth Science, 2013, 69: 2709. [29] Jordan C F. Ecology, 1969, 50:663. [30] Dash J, Curran P J. Remote Sensing, 2004, 25:5403. [31] Zarco Tejada P J, Miller J R, Noland T L, et al. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39:149. [32] Gitelson A A, Merzlyak M N. Plant Physiology, 1996, 148:494. [33] Mistele B, Schmidhalter U. Field Crops Research, 2008, 106:94. [34] Hansen P M, Schjoerring J K. Remote Sensing Environment, 2003, 86:542. [35] Stroppiana D, Boschetti M, Brivio P A, et al. Field Crops Research, 2009, 111:119. [36] Xue L H, Cao W X, Luo W H, et al. Agronomy Journal, 2004, 96(1): 135.