Laser Raman Spectroscopy and Its Application in Gas Hydrate Studies
FU Juan1,2,5, WU Neng-you2,4, LU Hai-long3, WU Dai-dai2*, SU Qiu-cheng2
1. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China 2. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China 3. College of Engineering, Peking University, Beijing 100871, China 4. Qingdao Institute of Marine Geology, Qingdao 266071, China 5. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Gas hydrates are important potential energy resources. Microstructural characterization of gas hydrate can provide information to study the mechanism of gas hydrate formation and to support the exploitation and application of gas hydrate technology. This article systemly introduces the basic principle of laser Raman spectroscopy and summarizes its application in gas hydrate studies. Based on Raman results, not only can the information about gas composition and structural type be deduced, but also the occupancies of large and small cages and even hydration number can be calculated from the relative intensities of Raman peaks. By using the in-situ analytical technology, laser Raman specstropy can be applied to characterize the formation and decomposition processes of gas hydrate at microscale, for example the enclathration and leaving of gas molecules into/from its cages, to monitor the changes in gas concentration and gas solubility during hydrate formation and decomposition, and to identify phase changes in the study system. Laser Raman in-situ analytical technology has also been used in determination of hydrate structure and understanding its changing process under the conditions of ultra high pressure. Deep-sea in-situ Raman spectrometer can be employed for the in-situ analysis of the structures of natural gas hydrate and their formation environment. Raman imaging technology can be applied to specify the characteristics of crystallization and gas distribution over hydrate surface. With the development of laser Raman technology and its combination with other instruments, it will become more powerful and play a more significant role in the microscopic study of gas hydrate.
[1] Kvenvolden K A. Proceedings of the National Academy of Sciences (USA),1999, 96(7): 3420. [2] Takaaki T, Kyohei O, Shunsuke H, et al. J. Phys. Conf. Ser., 2010, 215(1): 012061. [3] Anthonsen J W. Spectrochimica Acta Part A: Molecular Spectroscopy, 1976, 32(5): 963. [4] Prasad P S, Shiva P K, Sowjanya Y, et al. Current Science, 2008, 94(11): 1495. [5] Schicks J M, Ziemann M A, LU H L, et al. Spectrochimica Acta Part A, 2010, 77: 973. [6] LIU Chang-ling, YE Yu-guang, MENG Qing-guo(刘昌岭, 业渝光, 孟庆国). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2010, 30(4): 963. [7] Long D. The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. John Wiely & Sons, Ltd. England, 2002. 22. [8] Shinya N, Masato M, Kazunari O J. Chem. Eng. Data, 1998, 43:807. [9] Tulk C A, Ripmeester J A, Klug D D. Annals of the New York Academy of Sciences, 2000, 912:859. [10] Amadeu K S, Robert C B, Sloan E D. J. Phys. Chem. B, 1997, 101(38): 7371. [11] Peter Larkin. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, Elsevier, 2011, 15. [12] Chazallon B, Champagnon B, Panczer G, et al. Eur. J. Mineral.,1998, 10: 1125. [13] Ye Yuguang, Liu Changling. Natural Gas Hydrates: Experimental Technigues and Their Applications. Springer, 2013. 330. [14] Sloan E D. Nature, 2003, 426(10): 353. [15] Subramanian S, Sloan E D. Fluid Phase Equilibria, 1999, 158-160(6): 813. [16] Lu Hailong, Lorenson T D, Moudrakovski I L, et al. Marine and Petroleum Geology, 2011, 28(5): 411. [17] Chazallon B, Focsa C, Charlou J L, et al. Chemical Geology, 2007, 244(1): 175. [18] Kida M, Suzuki K, Kawamura T, et al. Energy Fuels, 2009, 23, 5580. [19] Ripmeester J A, Ratcliffe C I, Tse J S. J. Chem. Soc., 1988,84(1): 3731. [20] Uchida T, Hirano T, Ebinuma T, et al. AIChE Journal, 1999, 45(12): 2641. [21] Kumar R, Linga P, Moudrakovski I L, et al. AIChE Journal, 2008, 54 (8): 2132. [22] Liu Changling, Lu Hailong, Ye Yuguang, et al. Energy & Fuels, 2008, 22(6): 3986. [23] Ripmeester J A, Lu H L, Moudrakovski I L, et al. Geological Survey of Canada Bulletin,2005, 585:106. [24] Lu Hailong, Moudrakovski I L, Riedel Michael, et al. Journal of Geophysical Research, 2005, 110: B10204. [25] Hachikubo A, Oleg K, Masato K,et al. Geo-Mar Lett., 2012, 32(5-6): 419. [26] Liu Changling, Ye Yuguang, Meng Qingguo, et al. Marine Geology, 2012, 307-310(4): 22. [27] Lewis I R, Edwards H G. Handbook of Raman Spectroscopy: from the Research Laboratory to the Process Line. Marcel Dekker, 2001. 8. [28] Qin J f, Kuhs W F. AIChE J, 2013, 59: 2155. [29] Sasaki S, Kito Y, Kume T, et al. Chemical Physics Letters, 2007, 444: 91. [30] Machida S, Hirai H, Kawamura T, et al. Journal of Physics and Chemistry of Solids, 2010, 71: 1324. [31] Zhang Xin, Xiao Kui, Dong Chaofang, et al. Engineering Failure Analysis, 2011, 18(8): 1981. [32] Sloan E D. Clathrate Hydrate of Natural Gases. 2nd. ed. Marcel Dekker, Inc., New York. 1998. 9. [33] Davies R S, Sloan E D, Sum K A, et al. J. Phys. Chem. C, 2010, 114(2): 1173. [34] Trueba A T, Radovic I R, Zevenbergen J F, et al. International Journal of Hydrogen Energy, 2012, 37(7): 5790. [35] Lu Wanjun, Chou Ming, Burruss R C. Geochimica et Cosmochimica Acta, 2008, 72: 412. [36] Someya S, Bando S, Chen B, et al. International Journal of Heat and Mass Transfer, 2005, 48: 2503. [37] Ziparo C, Giannasi A, Ulivi L, et al. International Journal of Hydrogen Energy, 2011, 36: 7951. [38] Komai T, Kang S P, Yoon J H, et al. J. Phys. Chem. B, 2004, 108(23): 8062. [39] Subramanian S, Kini R A, Dec S F, et al. Annals of the New York Academy of Sciences, Gas Hydrates: Challenges for the Future, 2000, 912(1): 873. [40] Brewer P G, Malby G, Pasteris J D, et al. Deep-Sea Research I, 2004, 51(5): 739. [41] Hester K C, White S N, Peltzer E T, et al. Marine Chemistry, 2006, 98(2): 304.