Abstract:The dissolubility and surface properties of chalcopyrite were studied in different mechanical stirring time and different pH value solution under argon and oxygen atmosphere by ICP-MS, AFM and XPS analysis. Besides, the XRD diffraction pattern and crystal structure of chalcopyrite and its dissolution model in aqueous solution were established. The laboratory results indicate that the relationship between copper and iron concentrations in solution and time in pure water can be derived as the equation c=ksat+b. The lower pH value makes it easier for chalcopyrite to dissolve, and that the surface oxidation is slow has minor effect on the dissolubility. In pure water, the dissolution of chalcopyrite has little influence on the effective specific surface area, and the dissolution is controlled by surface chemical reaction under acidic conditions. After long time dissolution, the surface of the chalcopyrite assumes copper-rich state relative to iron and the surface roughness and lattice imperfections increase.
邓久帅,文书明*,先永骏,刘 建,刘 丹 . 黄铜矿在水溶液中的溶解特性和表面性质谱学表征[J]. 光谱学与光谱分析, 2012, 32(02): 519-524.
DENG Jiu-shuai, WEN Shu-ming*, XIAN Yong-jun, LIU Jian, LIU Dan . Spectroscopic Characterization of Dissolubility and Surface Properties of Chalcopyrite in Aqueous Solution . SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(02): 519-524.
[1] Farquhar M L, Wincott P L, Wogelius R A, et al. Applied Surface Science, 2003, 218(1-4) : 34. [2] Al-Harahsheh M, Kingman S, Rutten F, et al. International Journal of Mineral Processing, 2006, 80(2-4): 205. [3] Yin Q, Vaughan D J, England K E R, et al. Journal of the Electrochemical Society , 2000, 147(8): 2945. [4] Palmer B R, Nebo C O, Rau M F, et al. Metallurgical and Materials Transactions B, 1981, 12(3): 595. [5] Antonijevic M M, Jankovic Z D, Dimitrijevic M D. Hydrometallurgy, 2004, 71(3-4): 329. [6] Adebayo A O, Ipinmoroti K O, Ajayi O. Chemical and Biochemical Engineering Quarterly, 2003, 17(3): 213. [7] Aydogan S, Ucar G, Canbazoglu M, et al. Hydrometallurgy, 2006, 81(1): 45. [8] Elsherief A E. Minerals Engineering, 2002, 15(4): 215. [9] Gulfen M, Aydin A O. Indian Journal of Chemical Technology, 2010, 17(2): 145. [10] Ikiz D, Gulfen M, Aydin A O. Minerals Engineering, 2006, 19(9): 972. [11] Goyne K W, Brantley S L, Chorover J. Chemical Geology, 2006, 234(1-2): 28. [12] Padilla R, Pavez P, Ruiz M C. Hydrometallurgy, 2008, 91(1-4): 113. [13] Lu Z Y, Jeffrey M I, Lawson F. Hydrometallurgy, 2000, 56(2): 189. [14] Lu Z Y, Jeffrey M I, Lawson F. Hydrometallurgy, 2000, 56(2): 145. [15] Velasquez-Yevenes L, Nicol M, Miki H. Hydrometallurgy, 2010, 103(1-4): 108. [16] Nicol M, Miki H, Velasquez-Yevenes L. Hydrometallurgy, 2010, 103(1-4): 86. [17] Yevenes L V, Miki H, Nicol M. Hydrometallurgy, 2010, 103(1-4): 80. [18] Miki H, Nicol M. Hydrometallurgy, 2011, 105(3-4): 246. [19] Acero P, Cama J, Ayora C. European Journal of Mineralogy, 2007, 19(2): 173. [20] Acero P, Cama J, Ayora C, et al. Geologica Acta, 2009, 7(3): 389. [21] Gulfen M, Aydin A O. Indian Journal of Chemical Technology, 2008, 15(2): 180. [22] Parker A, Klauber C, Kougianos A, et al. Hydrometallurgy, 2003, 71(1-2): 265. [23] Sasaki K, Takatsugi K, Ishikura K, et al. Hydrometallurgy, 2010, 100(3-4): 144. [24] Prosser A P. Hydrometallurgy, 1996, 41(2-3): 119. [25] Kimballa B E, Donald Rimstidtb J, et al. Applied Geochemistry, 2010, 25(7): 972.