光谱学与光谱分析
|
NO2 分子在550~740 nm范围内的激光诱导荧光光谱
张连水1 ,孙 博1 ,张贵银1, 2 ,赵晓辉1
1. 河北大学物理科学与技术学院,河北 保定 071002 2. 华北电力大学,河北 保定 071003
Laser Induced Dispersed Fluorescence Spectra of NO2 in the Range of 550-740 nm
ZHANG Lian-shui1 , SUN Bo1 , ZHANG Gui-yin1,2 ,ZHAO Xiao-hui1
1. College of Physics Science and Technology, Hebei University, Baoding 071002, China 2. North China Electric Power University, Baoding 071003, China
摘要 : 以皮秒Nd:YAG激光器的二倍频输出(532 nm)作为激发源,在室温下,对NO2 分子在低气压和较高气压情况下进行了激光诱导荧光研究。在低气压条件下获得了在550~740 nm范围内的振动序列,将其归属为由第一电子激发态A2 B2 态向基电子态X2 A1 态不同振动态的跃迁,由此得到对称振动模式和弯曲振动模式的谐振频率,分别为ω1 =1 300.72 cm-1 和ω2 =744.14 cm-1 。并在此基础上对较高气压下荧光光谱产生的明显红移现象进行了解释,得到了有意义的结果。
关键词 :NO2 分子;激光诱导荧光光谱;电子振动态;红移
Abstract :Laser induced dispersed fluorescence spectra (LIDFS) of NO2 molecules, excited by second harmonic lines (the output wavelength is 532 nm) of a pulsed Nd: YAG laser at room temperature and at low and high NO2 pressures, were obtained and analyzed. The authors got vibronic progressions in the range of 550-740 nm at low pressure and ascribed them to the transitions from the first excitation electronic state A2 B2 to the vibrational levels of the ground electronic state X 2 A 1 , and then calculated the harmonic frequencies of symmetry stretch and bond stretch: ω 1 =1 300.72 cm-1 and ω 2 =744.14 cm-1 , respectively. On the basis of what was above-mentioned, the authors compared the spectra at low pressure with those at high pressure and pointed out the difference between them. Then the authors also interpreted the obvious red shift of fluorescence spectra at high NO2 pressures in terms of a step-ladder model of vibrational deactivation and obtained significative results.
Key words :NO2 molecules;LIDFS;Vibration levels;Red shift
收稿日期: 2003-08-26
修订日期: 2004-01-11
通讯作者:
张连水
引用本文:
张连水1 ,孙 博1 ,张贵银1, 2 ,赵晓辉1 . NO2 分子在550~740 nm范围内的激光诱导荧光光谱 [J]. 光谱学与光谱分析, 2005, 25(03): 416-419.
ZHANG Lian-shui1 , SUN Bo1 , ZHANG Gui-yin1,2 ,ZHAO Xiao-hui1 . Laser Induced Dispersed Fluorescence Spectra of NO2 in the Range of 550-740 nm. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2005, 25(03): 416-419.
链接本文:
https://www.gpxygpfx.com/CN/Y2005/V25/I03/416
[1] CUI Zhi-feng, CHEN Dong, FENG Er-yin et al(崔执凤,陈 东,凤尔银等). Acta Physica Sinica(物理学报), 2000, 49(11):2151. [2] Delon Antonie, Jost Remy. Journal of Chemical Physics, 2001, 114(1): 331. [3] Kirmse Bernd, Delon Antonie, Jost Remy. Journal of Chemical Physics, 1998, 108(16): 6638. [4] Delon Antonie, Jost Remy. Journal of Chemical Physics, 1999, 110(9): 4300. [5] Lievin J, Delon A, Jost R. Journal of Chemical Physics, 1998, 108(21): 8931. [6] Donnelly V M, Keil D G, Kaufman F. Journal of Chemical Physics, 1979, 71(2): 659. [7] Gillispie Gregory D, Khan Ahsan U. Journal of Chemical Physics, 1975, 63(8): 3425. [8] Herzberg Gerhard. Molecular Spectra and Molecular Structure Ⅲ. Electronic Spectra and Electronic Structure of Polyatomic Molecules. New York: Van Nostrand Reinhold Company, 1953. [9] Donnelly V M, Kaufman F. Journal of Chemical Physics, 1977, 67(10): 4768.
[1]
王珍妮,康志伟,刘 劲,张 杰. 基于自适应EMD-NDFT的太阳光谱多普勒红移测速方法 [J]. 光谱学与光谱分析, 2023, 43(11): 3475-3482.
[2]
伍 况,孙 春,曹冠龙,邱 波,姚 麟,张明儒,张立文. 注意力机制和两步走策略的测光图像红移回归模型 [J]. 光谱学与光谱分析, 2023, 43(08): 2529-2535.
[3]
闫鹏程,张孝飞,尚松行,张超银. LIF结合LSTM神经网络的矿井水源识别 [J]. 光谱学与光谱分析, 2022, 42(10): 3091-3096.
[4]
闫鹏程,张超银,孙全胜,尚松行,尹妮妮,张孝飞. LIF技术与ELM算法的电力变压器故障诊断研究 [J]. 光谱学与光谱分析, 2022, 42(05): 1459-1464.
[5]
. 激光诱导荧光光谱快速检测食源性致病菌 [J]. 光谱学与光谱分析, 2021, 41(09): 2817-2822.
[6]
. RF-CARS结合LIF光谱用于矿井涌水的预测评估 [J]. 光谱学与光谱分析, 2020, 40(07): 2170-2175.
[7]
. 氧化金激光诱导荧光光谱:b 4 Π 3/2 —X 2 Π 3/2 跃迁 [J]. 光谱学与光谱分析, 2020, 40(06): 1747-1750.
[8]
. 基于粒子群优化算法的测光红移回归预测 [J]. 光谱学与光谱分析, 2019, 39(09): 2693-2697.
[9]
. 放电辅助激光溅射气相金属化合物分子和离子的产生装置 [J]. 光谱学与光谱分析, 2018, 38(12): 3941-3945.
[10]
. 不同土壤物理性质下石油类污染物LIF发射特征研究 [J]. 光谱学与光谱分析, 2018, 38(11): 3541-3545.
[11]
. 一种基于遗传优化的BP神经网络的测光红移估计算法 [J]. 光谱学与光谱分析, 2018, 38(08): 2374-2378.
[12]
. 温度对矿井老空水激光诱导荧光光谱的影响 [J]. 光谱学与光谱分析, 2018, 38(08): 2583-2587.
[13]
. 基于FCM的煤矿突水激光诱导荧光光谱分析 [J]. 光谱学与光谱分析, 2018, 38(05): 1572-1576.
[14]
. 土壤有机污染物激光诱导荧光光谱检测方法研究进展 [J]. 光谱学与光谱分析, 2018, 38(03): 857-863.
[15]
. 紫外光区S2 分子激光诱导荧光光谱 [J]. 光谱学与光谱分析, 2017, 37(09): 2792-2798.