Temperature Dependence of Additional Peaks Characteristics of Single Mode Silica Fiber Stimulated Raman Scattering
MEN Zhi-wei1, SUN Xiu-ping1, 2, GAO Shu-qin1,ZHANG Xi-he2,WANG Zhao-min2,LI Zuo-wei1*
1. College of Physics, Jilin University, Changchun 130021, China 2. College of Science, Changchun University of Science and Technology, Changchun 130022, China
Abstract:Ten meter single mode silica fiber was used to study the temperature characteristics of stimulated Raman scattering (SRS), and additional peaks (double-humped structure) were observed at both sides of pump light and first-order Stokes light in the experiment. The peak intensity increased first, and then decreased as the temperature increased from 80 K to 295 K. The first-order Stokes double-humped wave peaks disappeared when the temperature was 295 K. The double-humped peaks phenomenon was caused by simulated four photon mixing (SFPM), according to stimulated four-photon mixing theoretical calculation. At the same time, the phenomenon that the frequency shift of first-order Stokes spectrum line in SRS increased from 706.9 to 712.9 cm-1 and its half width increased from 1.75 to 2.18 nm was theoretically explained, and the theoretical results are well consistent with experiments.
门志伟1,孙秀平1,2,高淑琴1,张喜和2,王兆民2,里佐威1* . 温度变化对单模石英光纤受激拉曼散射附加峰的影响[J]. 光谱学与光谱分析, 2009, 29(06): 1566-1569.
MEN Zhi-wei1, SUN Xiu-ping1, 2, GAO Shu-qin1,ZHANG Xi-he2,WANG Zhao-min2,LI Zuo-wei1* . Temperature Dependence of Additional Peaks Characteristics of Single Mode Silica Fiber Stimulated Raman Scattering . SPECTROSCOPY AND SPECTRAL ANALYSIS, 2009, 29(06): 1566-1569.
[1] Hart T R, Aggarwal R L, Benjamin L. Phys. Rev. B, 1970, 2: 638. [2] Stolen R H, Ippen E P, Tynes A R. Appl. Phys. Lett., 1972, 20(2): 62. [3] Stolen R H, Ippen E P. Appl. Phys. Lett., 1973, 22(6): 276. [4] Stolen R H, Gordon J P, Tomlinson W J, et al. J. Opt. Soc. Am. B, 1989, 6(6): 1159. [5] Picozzi A, Montes C, Botineau J, et al. J. Opt. Soc. Am. B, 1998, 15(4): 1309. [6] Hollenbeck D, Cantrell C D. J. Opt. Soc. Am. B, 2002, 19(12): 2886. [7] Zabolotskii A A. Journal of Experimental and Theoretical Physics, 1999, 88(4): 642. [8] SUN Xiu-ping, FENG Ke-cheng, ZHANG Xi-he(孙秀平,冯克成,张喜和). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2005, 25(12): 2002. [9] Shen Y R. The Principles of Nonlinear Optics. New York: John Wiley & Sons, 1984. 151. [10] Wardle D A. Raman Scattering in Optical Fibres Auckland: University of Auckland, 1999. 88. [11] Garth S J, Pask C, Rosman G E, et al. Opt. and Quan. Electr., 1998, 20(1): 79. [12] Hill K O, Johnson D C, Kawasaki B S. Appl. Opt., 1981, 20(6): 1075. [13] Mark I Stockman, David J Bergmen, Takayoshi Kobayash. Ultrafast Phenomena XIV. Berlin: Springer, 2004. 673. [14] Golovan L A, Petrov G I, Fang, etc G Y. Appl. Phys. B, 2006, 84(2): 303. [15] Long Derek A. The Raman Effect. Berlin: John Wiley & Sons, 2002. 50. [16] Stolen R H, Lee C, Jain R K. J. Opt. Soc. Am. B, 1984, 1(4): 652. [17] Shen Y R, Bloembergen N. Phys. Rev., 1965, A137: 1787. [18] Rothschild M, Abad H. Opt. Lett., 1983, 8(12): 653. [19] SUN Xiu-ping, FENG Ke-cheng, ZHANG Xi-he, et al(孙秀平,冯克成,张喜和, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2007, 27(10): 2049. [20] Lin C, Bosch M A. Appl. Phys. Lett., 1981, 38(7): 479. [21] Stolen R H. IEEE, Journal of Quan. Electr., 1975, QE-11(3): 100. [22] Shibatan S, Edahiro T. Electron. Lett., 1981, 17(8): 310. [23] Djafar K Mynbaev, Lowell L Scheiner. Fiber-Optic Communications Technology. New York: Pearson Education Inc., Pretice Hall Inc, 2002. [24] Zhao S, Wu F Q. Acta Photonica Sinica, 2006, 35(8): 1183.