光谱学与光谱分析
|
微波消化冷原子荧光法测定鲨鱼肝脏中的汞
翁 棣
浙江大学环境与资源学院,浙江 杭州 310029
Determination of Mercury in Shark Liver by Cold Atom Fluorescence Spectrometry after Microwave Dissolution
WENG Di
School of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, China
摘要 : 研究了冷原子荧光法测定鲨鱼肝脏中汞的工作条件。样品风干后在2 mol·L-1 HNO3 -4 mol·L-1 HCl体系中以V2 O5 为催化剂,微波消解样品,上清液中的汞被SnCl2 还原后于253.7 nm(激发光)用冷原子荧光法测定,线性范围0~0.2 ng·mL-1 ,r =0.999 7,检出限为0.05 ng·mL-1 ,相对标准偏差0.86%~2.22%,平均回收率在96.0%~108.5%,该法简便、快速、准确。
关键词 :微波消化;冷原子荧光法;鲨鱼肝脏;汞
Abstract :The conditions for the determination of mercury in shark liver by cold atom fluorescence spectrometry (CAFS) with microwave dissolution were studied. After being dried completely,the method employed 2 mol·L-1 HNO3 -4 mol·L-1 HCl as an oxidant,and with catalysis by V2 O5 , the samples were digested in a microwave oven. The mercury in absorption solution was reduced by SnCl2 , and then was determined by CAFS at wavelength of 253.7 nm. 10% SnCl2 solution was used as a reductive agent for mercury. The linear range was 0-2.0 ng·mL-1 mercury (r =0.999 7). The detection limit was 0.05 ng·mL-1 , the relative standard deviation was 0.86%-2.22%, and the average recovery rate was 96.0%-108.5%. The method was suitable for the determination of mercury in shark liver.
Key words :Microwave dissolution;Cold atom fluorescence;Shark liver;Mercury
收稿日期: 2004-08-03
修订日期: 2004-12-18
通讯作者:
翁 棣
引用本文:
翁 棣. 微波消化冷原子荧光法测定鲨鱼肝脏中的汞[J]. 光谱学与光谱分析, 2005, 25(12): 2073-2075.
WENG Di. Determination of Mercury in Shark Liver by Cold Atom Fluorescence Spectrometry after Microwave Dissolution . SPECTROSCOPY AND SPECTRAL ANALYSIS, 2005, 25(12): 2073-2075.
链接本文:
https://www.gpxygpfx.com/CN/Y2005/V25/I12/2073
[1] ZHANG Huo-zhong, SONG Xiu-jian, LI Yu-shan(张豁中,宋修俭,李玉山). Chin. Marine-Pharm. J. (中国海洋药物杂志), 1991, 37(1): 30. [2] XIE Zong-fa, CHEN Guang-ming, HUANG Ying(谢宗法,陈光明,黄 英). Chin. Bio-Chem. Pharm. J.(中国生化药物杂志), 1999, 20(2): 126. [3] Haynes L, Mckinney E C. Cell Immunol., 1991, 15(3):123. [4] HU Xiao-rong, LI Hui(胡晓荣, 李 晖). Journal of Sichuan University(四川大学学报), 2000, 32(6): 27. [5] WEI Fu-sheng, QI Wen-qi(魏复盛, 齐文启). Atomic Absorption Spectrometry and It's Application in Environmental Analysis(原子吸收光谱及其在环境分析中的应用). Beijing: China Environmental Science Press(北京: 中国环境科学出版社), 1988. [6] WENG Di, ZHAI Guo-qing(翁 棣,翟国庆). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2005,25(4):567. [7] Kevin O. Douglass, Neil Fitzgerald, Bradley J. Spectrochimica Acta Part B, 2004, 59: 261. [8] LIU Yi-li(刘艺力). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2003,23(5):987. [9] HUANG Sen-ke(黄森科). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2003,23(6):1194.
[1]
余 鑫,周 伟,谢栋材,肖 峰,李昕雨. 冷原子荧光光谱中数字基线估计方法的研究 [J]. 光谱学与光谱分析, 2022, 42(08): 2392-2396.
[2]
倪子月,程大伟,刘明博,岳元博,胡学强,陈 羽,李小佳. 热解析富集-能量色散X射线荧光光谱法对溶液中汞的测定 [J]. 光谱学与光谱分析, 2022, 42(04): 1117-1121.
[3]
. 硫胺素-三维荧光法测定水中汞离子的研究 [J]. 光谱学与光谱分析, 2021, 41(06): 1846-1851.
[4]
. X射线荧光光谱法对于土壤中痕量汞的快速检测 [J]. 光谱学与光谱分析, 2021, 41(03): 734-738.
[5]
. 基于聚腺嘌呤单链DNA-金纳米簇的荧光法高灵敏快速检测汞离子 [J]. 光谱学与光谱分析, 2021, 41(01): 164-167.
[6]
. 水浴消解-原子荧光光谱法测定土壤和沉积物中砷、汞、硒、锑和铋 [J]. 光谱学与光谱分析, 2020, 40(05): 1528-1533.
[7]
. 基于磺胺掺杂氮硫的碳点制备及对Hg2+ 的光化学识别 [J]. 光谱学与光谱分析, 2019, 39(11): 3388-3394.
[8]
. 氢化物发生-液体阴极辉光放电发射光谱对海水中硒、砷、汞的高灵敏定量检测 [J]. 光谱学与光谱分析, 2019, 39(05): 1359-1365.
[9]
. 基于功能核酸的水中汞离子荧光检测方法 [J]. 光谱学与光谱分析, 2018, 38(11): 3447-3451.
[10]
. 基于氧化石墨烯模拟酶比色法检测汞离子 [J]. 光谱学与光谱分析, 2018, 38(10): 3188-3191.
[11]
. 土壤汞污染下水稻植株的傅里叶红外光谱特征 [J]. 光谱学与光谱分析, 2018, 38(07): 2081-2085.
[12]
. 基于冷原子吸收分光光度法的热解析-低温等离子体脱汞技术研究 [J]. 光谱学与光谱分析, 2018, 38(07): 2279-2283.
[13]
. 基于L-半胱氨酸组装银纳米棒的SERS的传感器检测汞离子 [J]. 光谱学与光谱分析, 2018, 38(01): 117-122.
[14]
. 分散液液微萃取-原子荧光光度法测定大米中的汞 [J]. 光谱学与光谱分析, 2017, 37(11): 3606-3609.
[15]
. 便携式X射线荧光光谱快速无损分析牛黄清心丸(局方)中汞、砷含量及均匀度 [J]. 光谱学与光谱分析, 2017, 37(10): 3225-3228.