Micro-Inclusion Composition and Raman Spectral Characteristics of
Pyroxene From Mingxi, Fujian
ZHOU Hui-wei1, ZHANG Lu2, YANG Li-yi3, XU Shuang3, SHEN Hong-tao4, LIU Yun-gui5, 6, 7, 8, SONG Yan-jun5, 6, 7, 8*
1. Faculty of Earth Sciences, Hebei GEO University, Shijiazhuang 050031,China
2. Hebei Geo-Environment Monitoring, Shijiazhuang 050031,China
3. Guoye Shandong Bureau Group Geological Experiment Testing Technology Co., Ltd.,Jinan 250000,China
4. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences(Wuhan), Wuhan 430074,China
5. Faculty of Gemmology and Materials, Hebei GEO University, Shijiazhuang 050031,China
6. Gemstone Testing Center, Hebei GEO University, Shijiazhuang 050031,China
7. Engineering Research Center for Silicate Solid Waste Resource Utilization of Hebei Province, Shijiazhuang 050031,China
8. Hebei Key Laboratory of Green Development of Rock and Mineral Materials, Shijiazhuang 050031,China
Abstract:Pyroxene megacrysts are common minerals in Cenozoic alkaline basalt bodies in the eastern region of China. These pyroxenes and their internal inclusions provide important evidence for studying the composition of deep-mantle materials and deep-seated processes in eastern China. This study employs electron probe microanalysis (EPMA) and laser Raman spectroscopy to investigate the chemical composition and Raman spectral characteristics of pyroxene megacrysts and their microscopic inclusions in basalt bodies from the Mingxi area, Fujian Province. The results indicate that the Mingxi pyroxenes are augites, characterized by well-developed fractures and relatively high Ca and Mg contents. Their calculated chemical formula is (Ca0.66~0.68Na0.04~0.05Mg0.27~0.30)(Al0.25~0.26Fe2+0.18~0.21Fe3+0.04Ti0.02~0.03Mg0.48~0.50)[(Si1.86~1.92Al0.08~0.14)O6], with Raman characteristic peaks located at 1 008, 670, 545, 396, 338, and 232 cm-1. The pyroxenes contain abundant linear, dotted, or dashed metallic mineral inclusions, primarily composed of pyrrhotite and hematite mixtures, while fractures exhibit goethite impregnation. Among these, pyrrhotite is a mantle-derived inclusion with a chemical formula of Fe(0.81~0.88)S, whereas hematite and goethite are its later oxidation and hydration products. The fluid inclusions in Mingxi pyroxenes are mainly CO2, with a Fermi resonance doublet peak separation (Δσ) of 104.643 cm-1 in Raman spectroscopy. Based on the linear relationship between the Fermi resonance doublet and gas density, as well as the ideal gas equation of state, the formation depth is estimated to be greater than 72 km. The findings of this study provide valuable data for further research on the formation of basalt bodies and deep-seated processes in southeastern China.
[1] Morimoto N. Mineralogical Journal, 1989, 14(5): 198.
[2] LIU Xian-fan, WANG Ling, LI Hui, et al(刘显凡, 汪 灵, 李 慧, 等). Acta Mineralogica Sinca(矿物学报),2015, 35(1): 19.
[3] PAN Shao-kui, WU Xiao-long, HU Lin-lin, et al(潘少逵, 吴箫龙, 胡琳琳, 等). Journal of Gems & Gemmology(宝石和宝石学杂志),2024, 26(S1): 1.
[4] YAN Xue, WANG Li-yuan, CHEN Zhou-xin, et al(颜 雪, 王力圆, 陈洲鑫, 等). Journal of Jilin University(Earth Science Edition)[吉林大学学报(地球科学版)], 2025, 55(2): 463.
[5] SU Fei, XIAO Yan, HE Huai-yu, et al(苏 菲, 肖 燕, 贺怀宇, 等). Chinese Science Bulletin(科学通报),2014, 59(Z1): 374.
[6] LIU Xiao-han, KONG Fan-mei, LI Xu-ping, et al(刘晓寒, 孔凡梅, 李旭平, 等). Earth Science(地球科学),2019, 44(4): 1169.
[7] MO Fei, ZHANG Yin-hui, HONG Lu-bing, et al(莫 霏, 张银慧, 洪路兵, 等). Geochemistry(地球化学),2024, 53(6): 870.
[8] Guo J, Griffin W L, O'Reilly S Y. Journal of Petrology,1999, 40(7): 1125.
[9] White R W. Contributions to Mineralogy and Petrology,1966, 12(3): 245.
[10] Selverstone J. Contributions to Mineralogy and Petrology. 1982, 79(1): 28.
[11] Andersen T, Griffin W L, O'Reilly S Y. Lithos, 1987, 20(4): 279.
[12] Middlemost E. Chemical Geology,1989, 77(1): 19.
[13] WANG Rong, ZHANG Bao-min(王 蓉, 张保民). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2010, 30(2): 376.
[14] LU Li-fan, ZHU Qiao-qiao, XIE Gui-qing, et al(卢丽帆, 朱乔乔, 谢桂青, 等). Mineral Deposits(矿床地质),2025, 44(5): 1127.
[15] DING Yong-kang, QIU Zhi-li, DENG Xiao-qin, et al(丁永康, 丘志力, 邓小芹, 等). Geotectonica et Metallogenia(大地构造与成矿学),2025, 49(1): 85.
[16] De Faria, Lopes D L A, F N. Vibrational Spectroscopy,2007, 45(2): 117.
[17] Marshall, Claire P Stockdale, Gavin Carr, et al. Journal of Ramna Spectroscopy, 2025, 56: 1.
[18] Rosso K M, Bodnar R J. Geochimica Et Cosmochimica Acta,1995, 59(19): 3961.
[19] LI Shu-ling(李淑玲). Rock and Mineral Analysis(岩矿测试),1998, (3): 19.
[20] CHEN Yong, ZHOU Yao-qi, NI Pei(陈 勇, 周瑶琪, 倪 培). Rock and Mineral Analysis(岩矿测试),2006, (3): 211.
[21] CHEN Yong, ZHOU Yao-qi, YAN Shi-yong, et al(陈 勇, 周瑶琪, 颜世永, 等). Acta Geoscientica Sinica(地球学报),2006, (1): 69.