Research Progress of Structural Characterization of Coal by FTIR, XRD and Raman Spectroscopies
TIE Wei-bo1, WANG Pei1, ZHU Zhe-xuan1, WANG Qi1*, HUANG Jun-chen1, LI Xian-chun2
1. College of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
2. College of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
Abstract:To deeply understand the nature of coal, make efficient and reasonable use of coal resources, and respond to the national dual-carbon policy and sustainable development strategy, in-depth research on the molecular structure of coal is an effective way. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), and Raman spectroscopy offer the advantages of non-destructive analysis, rapidity, accuracy, simplicity, and both qualitative and quantitative analysis for coal structure detection. The three spectral techniques can effectively obtain different structural information about coal macromolecules, including the microcrystalline structure characteristics of carbon, the amorphous carbon structure characteristics, and the characteristics of various functional groups. The quantification and characterization of coal structure characteristics provide basic theoretical guidance for rational selection, use, and analysis of the behavior characteristics of the coal coking process. At the same time, the study of coal structure plays a positive role in the promotion and application of spectral technology in the coking industry. This paper reviews the application and progress of three spectral detection technologies in coal structure characterization, systematically summarizes the development of the three spectral technologies, as well as the specific methods and principles of the coal structure research process, including the attribution of characteristic peaks, the separation method of characteristic peaks, and the calculation methods of different structural characteristic parameters of coal. Research progress on the structure evolution of coal and the coking process, including the relationship between structure, composition, and performance, and the correlation between structure evolution and coke forming behavior. Combined with the development of science and technology and the existing research results, the bottleneck problems faced by three kinds of spectral technology in the process of coal structure research and improvement directions are put forward: to develop more scientific and reliable spectral analysis methods and theories, and establish a good correlation between coal structure and its properties; The spectrum technology is linked with other equipment to provide more comprehensive structural information; Intelligent and integrated spectrum detection equipment to achieve industrial online detection and intelligent data analysis; The establishment of a spectral analysis database, the realization of data collection and sharing, for the in-depth exploration of coal structure and enhance its practicability to provide a powerful condition.
铁维博,汪 沛,朱喆炫,汪 琦,黄浚宸,李先春. FTIR、XRD和Raman光谱技术对煤结构表征的研究进程[J]. 光谱学与光谱分析, 2025, 45(11): 3020-3026.
TIE Wei-bo, WANG Pei, ZHU Zhe-xuan, WANG Qi, HUANG Jun-chen, LI Xian-chun. Research Progress of Structural Characterization of Coal by FTIR, XRD and Raman Spectroscopies. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(11): 3020-3026.
[1] Mulligan M J, Thomas K M. Fuel, 1987, 66(9): 1289.
[2] Shinn J H. Fuel, 1984, 63(9): 1187.
[3] Wang Y C, Xue Y B, Wang X X. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2017, 39(16): 1733.
[4] Given P H. The Distribution of Hydrogen in Coals and Its Relation to Coal Structure, Fuel, 1960, 39(2): 147.
[5] Wiser W H. Conversion of Bituminous Coal to Liquids and Gases: Chemistry and Representative Processes, In: Petrakis L, Fraissard J P (eds) Magnetic Resonance, NATO ASI Series, Vol 124. Springer, 1984.
[6] Li K J, Khanna R, Zhang J L, et al. Energy & Fuels, 2015, 29(11): 7178.
[7] Morga R. International Journal of Coal Geology, 2010, 84(1): 1.
[8] Solomon P R, Carangelo R M. Fuel, 1982, 61(7): 663.
[9] Painter P C, Snyder R W, Starsinic M, et al. Applied Spectroscopy, 1981, 35(5): 475.
[10] Bassilakis R, Carangelo R M, Wojtowicz M A. Fuel, 2001, 80(12): 1765.
[11] Ibarra J V, Munoz E, Moliner R. Organic Geochemistry, 1996, 24(6-7): 725.
[12] Zieger L, Littke R, Schwarzbauer J. International Journal of Coal Geology, 2018, 185: 91.
[13] TIE Wei-bo,WANG Qi,GAN Xiu-shi,et al(铁维博,汪 琦,甘秀石,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2024, 44(12): 3553.
[14] Mastalerz M, Bustin R M. International Journal of Coal Geology, 1993, 24(1-4): 333.
[15] Chen Y Y, Mastalerz M, Schimmelmann A. International Journal of Coal Geology, 2012, 104: 22.
[16] Wang S H, Griffiths P R. Fuel, 1985, 64(2): 229.
[17] He X Q, Liu X F, Nie B S, et al. Fuel, 2017, 206(1): 555.
[18] Iglesias M J, Jiménez A, Laggoun-Défarge F, et al. Energy & Fuels, 1995, 9(3): 458.
[19] LI Xia,ZENG Fan-gui,WANG Wei,et al(李 霞,曾凡桂,王 威,等). Journal of China Coal Society(煤炭学报), 2015, 40(12): 2900.
[20] Warren B E. The Physical Review, 1941, 59(9): 693.
[21] Biscoe J, Warren B E. Journal of Applied Physics, 1942, 13(6): 364.
[22] Ergun S, Tiensuu V H. Fuel, 1959, 38(1): 64.
[23] Manoj B, Kunjomana A G. International Journal of Electrochemical Science, 2012, 7(4): 3127.
[24] Lievens C, Ci D, Bai Y, et al. Fuel Processing Technology, 2013, 116(1): 85.
[25] Li X J, Hayashi J I, Li C Z. Fuel, 2006, 85(12): 1700.
[26] Morga R. International Journal of Coal Geology, 2011, 87(3-4): 253.
[27] Xu J, Tang H, Su S, et al. Energy & Fuels, 2017, 31(8): 7884.
[28] Zhang Y, Li Z. Fuel, 2019, 241(4): 188.
[29] Keown D M, Li X, Hayashi J I, et al. Fuel Processing Technology, 2008, 89(12): 1429.
[30] Wang S, Li T, Wu L, et al. Fuel Processing Technology, 2015, 135(7): 105.
[31] Schwan J, Ulrich S, Batori V, et al. Journal of Applied Physics, 1996, 80(1): 440.
[32] LI Xia,ZENG Fan-gui,WANG Wei,et al(李 霞,曾凡桂,王 威,等). Journal of China Coal Society(煤炭学报), 2016, 41(9): 2298.
[33] Meng H, Wang S, Chen L, et al. Fuel, 2015, 158(15): 602.
[34] Wang W, Thomas K M, Poultney R M, et al. Carbon, 1995, 33(11): 1525.
[35] Rantitsch G, Bhattacharyya A, Schenk J, et al. International Journal of Coal Geology, 2014, 130: 1.
[36] JIA Ting-gui,LI Xun,QU Guo-na,et al(贾廷贵,李 璕,曲国娜,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(11): 3363.
[37] Orrego-Ruiz J A, Cabanzo R, Mejia-Ospino E. International Journal of Coal Geology, 2011, 85(3-4): 307.
[38] Wu D, Liu G, Sun R, et al. Energy & Fuels, 2013, 27: 5823.
[39] Chen S, Tao X, Wang S, et al. Fuel, 2019, 236: 636.
[40] Wang J P, Li G Y, Guo R, et al. Energy & Fuels, 2017, 31(1): 124.
[41] XIANG Jian-hua,ZENG Fan-gui,LIANG Hu-zhen,et al(相建华,曾凡桂,梁虎珍,等). Journal of China Coal Society(煤炭学报), 2016, 41(6): 1498.
[42] LUO Yun-fei,LI Wen-hua(罗陨飞,李文华). Journal of China Coal Society(煤炭学报), 2004, 29(3): 338.
[43] Nestier K, Dietrich D, Witke K, et al. Journal of Molecular Structure, 2003, (661-662): 357.
[44] Marques M, Suarez-Ruiz I, Flores D, et al. International Journal of Coal Geology, 2009, 77(3-4): 377.
[45] Nomura S, Thomas K M. Fuel, 1998, 77(8): 829.
[46] Lee S, Yu J, Mahoney M, et al. Fuel, 2019, 242: 277.
[47] Mochida I, Yoon S-H, Qiao W. Journal of the Brazilian Chemical Society, 2006, 17(6): 1059.
[48] Tie W B, Huang J C, Wang Q, et al. Fuel, 2024, 363: 130350.
[49] Chen Y, Lee S, Tahmasebi A, et al. Fuel, 2020, 271: 117657.
[50] Shin S M, Park J K, Jung S M. ISIJ International, 2015, 55(8): 1591.
[51] Okolo G N, Neomagus H W J P, Everson R C, et al. Fuel, 2015, 158: 779.