Role of Oxidant and Fluoride in Stone Coal-Type Vanadium Ore Leaching Process Based on SEM and Element Mapping Analysis
LIU Ming-bao1, 2, ZHANG Tian1, 2, LI Feng1, 2, LIU Heng1, 2, YIN Wan-zhong3
1. Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shangluo 726000, China
2. College of Chemical Engineering and Modern Material, Shangluo University, Shangluo 726000, China
3. School of Resources and Civil Engineering, Northeastern University, Northeastern University, Shenyang 110004, China
Abstract:Vanadium-bearing mica in stone coal vanadium ore serves as one of the important vanadium source minerals. While the presence of oxidizing agents and fluorides significantly enhances vanadium leaching efficiency, the underlying mechanisms remain incompletely understood. This study focuses on the ShanYang stone coal vanadium deposit in Shangluo, Shaanxi Province. Using a thermostatic waterbath-sulfuric acid leaching technique,the effects of oxidizing agents and fluoride systems, including binary fluorides of GroupⅠ, Ⅱ, Ⅲ metals, hydrofluorides (K+/Na+/NH+4), and hexafluoro-silicates/aluminates/phosphates, on vanadium leaching are systematically investigated. Through SEM and element mapping analysis, the primary pathways by which oxidants and fluorides promote vanadium leaching are clarified for the first time. Results indicate that the “pore corrosion” and “crevice corrosion” induced by the oxidant and fluorides are the main ways for efficient vanadium leaching. The effects of Group Ⅰ, Ⅱ metallic fluorides have been found to follow the order: CsF>KF>NaF>LiF, BaF2>SrF2>CaF2>MgF2,aligning with the lattice energies of these fluorides and the standard Gibbs free energy changes for HF production via reactions of these fluorides with leaching agent(sulfuric acid). In hexafluorosilicate/aluminate/phosphate systems, Na2SiF6 predominantly induces “pore corrosion”, while (NH4)2SiF6 generates extensive “crevice corrosion”traces. Faster HF mass transfer in fissure corrosion explains their divergent leaching efficiencies at varying dosages. Na3AlF6 forms colloidal aggregates that hinder mass transfer, resulting in lower leaching efficiency compared to (NH4)3AlF6, as confirmed by Al mapping in the residues. PF-6 exhibits weaker dissociation than SiF2-6/AlF3-6 due to stronger P—F bonds (vs. Si—F/Al—F), making NH4PF6 less effective. Hydrofluorides (KHF2>NH4HF2>NaHF2) achieve superior leaching via “pore corrosion”, with KHF2 achieving 96.0% vanadium recovery-the highest among all fluorides. SEM confirms the presence of abundant corrosion pores in KHF2 residues. This work provides theoretical and technical foundations for optimizing vanadium extraction from stone coal.
Key words:Vanadium extraction from stone coal; Leaching; Aid-Leaching reagent; Vanadium; Oxidizing leaching
刘明宝,张 甜,李 峰,刘 恒,印万忠. 氧化剂及氟化物对石煤钒矿浸出特性的SEM和Mapping分析[J]. 光谱学与光谱分析, 2025, 45(09): 2606-2613.
LIU Ming-bao, ZHANG Tian, LI Feng, LIU Heng, YIN Wan-zhong. Role of Oxidant and Fluoride in Stone Coal-Type Vanadium Ore Leaching Process Based on SEM and Element Mapping Analysis. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(09): 2606-2613.
[1] HUANG Zu-lü, CHEN Tao, LIN Han-zhi, et al(黄祖率, 陈 涛, 林翰志, 等). Rare Metals and Cemented Carbides(稀有金属与硬质合金), 2020, 48(3): 11.
[2] DAI Zi-lin, ZHANG En-pu(戴子林, 张恩普). Mining and Metallurgical Engineering(矿冶工程), 2015, 35(6): 85.
[3] Bai Z, Sun Y S; Xu X, et al. Advanced Powder Technology, 2024, 35: 104296.
[4] WANG Xiang, WU Tian-jiao(王 祥, 吴天娇). Hydrometallurgy of China(湿法冶金), 2024, 43(3): 224.
[5] WANG Zhen-wen, YIN Fei, ZOU Wei, et al(王振文, 尹 飞, 邹 维, 等). Nonferrous Metals Engineering(有色金属工程), 2023, 13(4): 45.
[6] Yuan S, Qin Y H, Jin Y P, et al. Transactions of Nonferrous Metals Society of China, 2022, 32: 3767.
[7] Yuan S, He M Y, Wang R F, et al. Powder Technology, 2022, 405: 117532.
[8] WAN Hong-qiang, ZHANG Li-fen, WANG Feng-gang, et al(万洪强, 张丽芬, 王奉刚, 等). Rare Metals and Cemented Carbides(稀有金属与硬质合金), 2023, 51(4): 18.
[9] JIANG Mou-feng, ZHANG Yi-min, BAO Shen-xu, et al(蒋谋锋, 张一敏, 包申旭, 等). Nonferrous Metals-Extractive Metallurgy(有色金属—冶炼部分), 2015, (8): 34.
[10] HUANG Jun, ZHANG Yi-min, HUANG Jing, et al(黄 俊, 张一敏, 黄 晶, 等). Metal Mine(金属矿山), 2015, (10): 85.
[11] Hu P C, Zhang Y M, Liu T, et al. Separation and Purification Technology, 2017, 180: 99.
[12] Hu P C, Zhang Y M, Zheng Q S. Colloids and Surfaces A: Physicochemical and Engineering, 2024. 703(P1): 135280.
[13] ZHANG Cheng-qiang, SUN Chuan-yao, YIN Wan-zhong, et al(张成强, 孙传尧, 印万忠, 等). Multipurpose Utilization of Mineral Resources(矿产综合利用), 2019, (5): 42.
[14] LI Chong, CHEN Yan-xin, ZHAO Bo, et al(李 崇, 陈延信, 赵 博, 等). Journal of Materials Science and Engineering(材料科学与工程学报), 2022, 40(5): 865.
[15] HAN Feng, JIA De-xiong, GAO Xi-jie(韩 峰, 贾德雄, 高夕杰). Applied Chemical Industry(应用化工), 2016, 45(2): 274.
[16] Dong Y B, Zan J Y, Lin H. International Journal of Minerals, Metallurgy and Materials, 2024, 31(8): 1828.
[17] Dong Y B, Zan J Y, Lin H. Minerals Engineering, 2024, 215: 108792.
[18] Long T, Gu T Y, Luukkanen S, et al. JOM, 2024, 76(7): 3372.
[19] Li Hui, Han Y X, Jin J P, et al. International Journal of Mining Science and Technology, 2023, 33(1): 123.
[20] Zhang J, Liu K P, Yan B J. Journal of Cleaner Production, 2022, 349: 131485.
[21] Tang Y, Ye G H, Zhang H, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650: 129584.
[22] Chen X X, Wang H, Yan B J. Hydrometallurgy, 2020, 191: 105239.
[23] Dong Y B, Lin H, Liu Y, et al. Journal of Cleaner Production, 2020, 243: 118625.
[24] Yan B J, Wang D Y, Wu L S, et al. Minerals Engineering, 2018, 125: 231.