External Electric Field Effects on the Molecular Structure and Spectra of 1,5-Dinitronaphthalene
LI Yi-duo1, FENG Zhi-fang1, CHEN Dong-ming2, ZHANG Qian1, YAO Ning1, ZHANG Ping1, TAO Ya-ping3, ZHAO Wen-lai4, DU Jian-bin1*
1. College of Science, Langfang Normal University, Langfang 065000, China
2. School of Mechanical and Electrical Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China
3. College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471934, China
4. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
Abstract:1,5-dinitronaphthalene (DNN) is an important chemical raw material, widely used in various fields. To study the effect of external electric field (EEF) on DNN, the B3LYP of density functional theory (DFT) is employed to optimize the ground state structure of DNN at the def2-TZVP basis set level, and its infrared (IR) spectra are obtained. Based on this, time-dependent density functional theory (TDDFT) is employed to calculate the change in UV-Vis spectra of DNN under EEF. The range of the electrostatic field is 0~0.02 a.u. in this work. The results show that the geometric configuration of DNN strongly depends on changes in EEF. The dipole moment increases with the enhancement of EEF, while the change in total energy is opposite. The IR spectra undergo energy splitting, and the vibration Stark effect is obvious. The absorption peaks of the UV-Vis spectra exhibit a red shift; the molar coefficients initially increase and then decrease. In the two-dimensional UV-Vis spectrum of DNN, there is a strong autocorrelation peak at 200 nm on the diagonal of the synchronous graph, which indicates that the peak is very sensitive to changes in EEF. In summary, EEF has a significant impact on DNN. This work provides theoretical guidance for various potential applications of DNN, and also has reference value for the study of other nitration products of naphthalene.
Key words:1,5-dinitronaphthalene;External electric field;DFT;Spectra
李译铎,冯志芳,陈东明,张 倩,姚 宁,张 平,陶亚萍,赵文来,杜建宾. 外电场作用下1,5-二硝基萘的分子结构和光谱研究[J]. 光谱学与光谱分析, 2025, 45(10): 2760-2766.
LI Yi-duo, FENG Zhi-fang, CHEN Dong-ming, ZHANG Qian, YAO Ning, ZHANG Ping, TAO Ya-ping, ZHAO Wen-lai, DU Jian-bin. External Electric Field Effects on the Molecular Structure and Spectra of 1,5-Dinitronaphthalene. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(10): 2760-2766.
[1] Xiong W, Zhou S S, Zhao Z Y, et al. Frontiers of Chemical Science and Engineering, 2021, 15(4): 998.
[2] Yan J Q, You K Y, Yin J H, et al. Surfaces and Interfaces, 2023, 36: 102501.
[3] Chen Z F, Su H, Sun P F, et al. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(6): e2116775119.
[4] Onduka T, Ojima D, Ito K, et al. Chemosphere, 2017, 169: 596.
[5] DU Jian-bin, FENG Zhi-fang, ZHANG Qian, et al (杜建宾,冯志芳,张 倩,等). Acta Physica Sinica(物理学报), 2019, 68(17): 173101.
[6] Zhang Q, Feng Z F, Niu Y L, et al. Chemical Physics Letters, 2024, 849: 141419.
[7] LIU Chen-xi, PANG Guo-wang, PAN Duo-qiao, et al(刘晨曦,庞国旺,潘多桥,等). Acta Physica Sinica(物理学报), 2022, 71(9): 097301.
[8] Sjoblom J, Mhatre S, Simon S, et al. Advances in Colloid and Interface Science, 2021, 294: 102455.
[9] Wu L T, Nachimuthu S, Kaleta J, et al. Journal of Chemical Physics, 2024, 161: 214301.
[10] Rana D, Ranga A K, Materny A. Physical Chemistry Chemical Physics, 2025, 27: 4475.
[11] QI Kai, ZHU Xing-guang, WANG Jun, et al(齐 凯,朱星光,王 军,等). Acta Physica Sinica(物理学报), 2024, 73(15): 156801.
[12] AN Huan, YAN Hao-kui, XIANG Mei, et al(安 桓,闫好奎,向 梅,等). Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2023, 43(2): 405.
[13] Tao Y P, Wang Q, Sun K X, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 231: 118108.
[14] Peng X G, Cao W J, Hu Z B, et al. Journal of Chemical Physics, 2024, 160: 054308.
[15] Mori T. Angewandte Chemie International Edition, 2024, 63: e202319702.
[16] Sharma P, Ranjan P, Chakraborty T. Materials Today Sustainability, 2024, 26: 100791.
[17] Burguera S, Sahu A K, Chavez Romero M J, et al. Physical Chemistry Chemical Physics, 2024, 26: 18606.
[18] Duan J J, Yang X Q, Li R N, et al. Journal of the American Chemical Society, 2024, 146: 13025.
[19] Diao K, Shi S P, Song Y, et al. International Journal of Hydrogen Energy, 2024, 67: 1173.
[20] Roy S, Durholt J P, Asche T S, et al. Nature Communications, 2024, 15: 6030.
[21] Sameera W M C, Senevirathne B, Andersson S, et al. The Journal of Physical Chemistry A, 2021, 125: 387.
[22] Tao Y P, Han L G, Sun A D, et al. Crystals, 2020, 10: 19.
[23] Grozema F C, Telesca R, Jonkman H T, et al. Journal of Chemical Physics, 2001, 115(21): 10014.
[24] Wu D L, Tan B, Wan H J, et al. Chinese Physics B, 2013, 22(12): 123101.
[25] Lin H, Liu Y Z, Yin W Y, et al. Journal of Theoretical and Computational Chemistry, 2018, 17(4) 1850029.
[26] Du J B, Yao N, Ma X Y, et al. Chemical Physics Letters, 2023, 810: 140176.
[27] Arivazhagan M, Krishnakumar V, Xavier R J, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009, 72: 941.
[28] van Adrichem K E, Jansen T L C. Journal of Chemical Theory and Computation, 2022, 18: 3089.
[29] Zhang W, Wu B H, Sun S T, et al. Nature Communications, 2021, 12: 4082.