Study on Rapid Antimicrobial Susceptibility Test of Pseudomonas Aeruginosa by D2O-Labeled Single-Cell Raman Spectroscopy
WANG Feng-chan1, NIU Lu1, YE Hai-yan1, FU Xiao-ting2, DAI Jing2, LI Yuan-dong2, HU Hai-bo1, LU Xue-chao1*
1. Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, China
2. Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
Abstract:Pseudomonas aeruginosa is one of the important pathogens causing clinical pneumonia. The rapid spread of antibiotic resistance threatens our fight against bacterial infections. However, the culture-based broth microdilution method (BMD) is the gold standard method for in vitro antimicrobial susceptibility tests (ASTs), which seriously affects the therapeutic effect of patients due to longer detection time. Single-cell Raman spectroscopy (SCRS) is label-free, culture-free, rapid, accurate and low-cost. Here we research the AST of Pseudomonas aeruginosa using the Clinical Antimicrobials Susceptibility Test Ramanometry (CAST-R), based on D2O-probed Raman spectroscopy. We selected three antibiotics (Meropenem, Ceftazidime and Cefepime) and three Pseudomonas aeruginosa strains to carry out the AST. CAST-R results show 100% essential agreement and 88.9% categorical agreement with BMD methods, and it can achieve the AST results within 4h. The speed, reliability, and general applicability of CAST-R suggest its potential utility for guiding the clinical administration of antimicrobials.
王凤婵,牛 璐,叶海燕,付晓婷,戴 静,李远东,胡海波,陆学超. 基于重水标记拉曼光谱技术的铜绿假单胞菌快速药敏鉴定方法研究[J]. 光谱学与光谱分析, 2025, 45(08): 2253-2258.
WANG Feng-chan, NIU Lu, YE Hai-yan, FU Xiao-ting, DAI Jing, LI Yuan-dong, HU Hai-bo, LU Xue-chao. Study on Rapid Antimicrobial Susceptibility Test of Pseudomonas Aeruginosa by D2O-Labeled Single-Cell Raman Spectroscopy. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(08): 2253-2258.
[1] Andrejko M, Zdybicka-Barabas A, Janczarek M, et al. Acta Biochimica Polonica, 2013, 60(1): 83.
[2] 2021National Bacterial Drug Resistance Monitoring Report (Abbreviated Edition)[2021年全国细菌耐药监测报告(简要版)]. China Antimicrobial Resistance Surveillance System(全国细菌耐药监测网), 2023年1月10日, http://www.carss.cn/Report/Details?aId=862.
[3] Reller L B, Weinstein M, Jorgensen J H, et al. Clinical Infectious Diseases, 2009, 49(11): 1749.
[4] Balouiri M, Sadiki M, Ibnsouda S K. Journal of Pharmaceutical Analysis, 2016, 6(2): 71.
[5] Li M, Xu J, Romero-Gonzalez M, et al. Current Opinion in Biotechnology, 2012, 23(1): 56.
[6] Huang W E, Griffiths R I, Thompson I P, et al. Analytical Chemistry, 2004, 76(15): 4452.
[7] Lu W, Li H, Qiu H, et al. Frontiers in Microbiology, 2023, 13: 1076965.
[8] Petry R, Schmitt M, Popp J. Chemphyschem, 2003, 4(1): 14.
[9] Montanari L B, Sartori F G, Ribeiro D B M, et al. Journal of Water and Health, 2018, 16(2): 311.
[10] Tao Y, Wang Y, Huang S, et al. Analytical Chemistry, 2017, 89(7): 4108.
[11] Hong W, Karanja C W, Abutaleb N S, et al. Analytical Chemistry, 2018, 90(6): 3737.
[12] Yang K, Li H Z, Zhu X, et al. Analytical Chemistry, 2019, 91(9): 6296.
[13] Bauer D, Wieland K, Qiu L, et al. Analytical Chemistry, 2020, 92(13): 8722.
[14] Zhang M, Hong W, Abutaleb N S, et al. Advanced Science, 2020, 7(19): 2001452.
[15] Yi X, Song Y, Xu X, et al. Analytical Chemistry, 2021, 93(12): 5098.
[16] Berry D, Mader E, Lee T K, et al. Proceedings of the National Academy of Sciences, 2015, 112(2): E194.
[17] Zhu P, Ren L, Zhu Y, et al. mLife, 2022, 1(3): 329.
[18] Li H Z, Zhang D D, Yang K, et al. Analytical Chemistry, 2020, 92(23): 15472.
[19] Wayne P A. CLSI Supplement Document M100-S30CLSI; CLSI, 2020.
[20] RUAN Zhen, ZHU Peng-fei, ZHANG Lei, et al(阮 真, 朱鹏飞, 张 磊, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(11): 3468.