1. Center of Laboratory, Guizhou Police College, Guiyang 550000, China
2. Physical Evidence Identification Center of Guizhou Provincial Public Security Department, Guiyang 550000, China
Abstract:In this study, we report the Raman spectroscopy of etomidate and its analogs medetomidate, propoxate, and the metabolite etomidate acid, and the spectroscopy was analyzed in conjunction with quantum chemical calculations. The results demonstrate distinct Raman spectroscopy differences between etomidate acid and etomidate, due to structural differences, etomidate, medetomidate and propoxate exhibit significantly different Raman activities in the regions of 691~715, 842~866, 955, 1 351~1 375, and 1 411~1 453 cm-1, which are the key to differentiate the three substances. The investigation further compares the Raman spectroscopy of etomidate and its analogs with those of New Psychoactive Substances(NPS), including piperazine, fentanyl, and cathinone. Potential energy distribution (PED) analysis identifies characteristic Raman peaks near 923, 980, 1 000, 1 030, 1 710, and 1 360 cm-1 are identified as key indicators for recognizing etomidate and its analogs. Finally, the suspected etomidate “smoke powder” seized by the public security department is tested, and its etomidate content is rapidly confirmed through Raman spectroscopy. The study provides an important reference for the rapid detection of etomidate and its analogs, and also systematically analyzes the differential Raman spectroscopy of etomidate, medetomidate, propoxate and etomidate acid, which makes it possible to differentiate etomidate and its analogs by Raman spectroscopy.
Key words:Etomidate; New Psychoactive Substances; Raman spectroscopy
[1] Valk B I, Struys M M R F. Clinical Pharmacokinetics, 2021, 60(10): 1253.
[2] Uhm J, Hong S, Han E. Forensic Science Medicine and Pathology, 2024, 20(1): 249.
[3] China National Narcotic Control Committee(国家禁毒委员会办公室). China Drug Situation 2021(《2021年中国毒情形势报告》), 2022-06-23, www.nncc626.com/2022-06/23/c_1211659746.htm.
[4] ZHOU Hua, XU Yue, HU Yu-peng, et al(周 华,徐 越,胡羽鹏,等). Forensic Science and Technology(刑事技术), 2024, doi: 10.16467/j.1008-3650.2024.0047.
[5] HAN Xing, LIU Xin, DU Ming-luo, et al(韩 兴,刘 昕,杜明荦,等). Journal of Forensic Medicine(法医学杂志), 2023, 39(6): 564.
[6] Park Y J, Cho E, Kim S H, et al. Journal of Forensic Science, 2022, 67(6): 2479.
[7] Huang R, Peng A, Hu J, et al. Scientla Sicica Chimica, 2023, 53(5): 861.
[8] Wang H, Xue Z, Wu Y, et al. Analytical Chemistry, 2021, 93(27): 9373.
[9] Turzhitsky V, Zhang L, Horowitz G L, et al. Small, 2018, 14(47): 1802392.
[10] Mirsafavi R, Moskovits M, Meinhart C. Analyst, 2020, 145(9): 3440.
[11] Ye J, Wang S, Zhang Y, et al. Applied Optics, 2021, 60(8): 2354.
[12] LI Chang-ming, GU Yi-fan, ZHANG Hong-chen, et al(李长明, 顾一凡, 张红臣, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2024, 44(6): 1566.
[13] Frisch M, Trucks G, Schlegel H, et al. Gaussian Inc. Wallingford CT. 2009.
[14] Goswami U, Rahman M M, Teng J, et al. Nature Communications, 2023, 14(1): 3169.
[15] Laury M L, Carlson M J, Wilson A K. Journal of Computational Chemistry, 2012, 33(30): 2380.
[16] Qin Y, Yin S, Chen M, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 285(262): 121923.
[17] LI Jin, JIANG Hong, ZHANG Xin-yi, et al(李 锦, 姜 红, 张馨艺, 等). Chem. Bull.(化学通报), 2022, 85(6): 759.
[18] WU Guo-ping, HU Chen-chen, LU Teng, et al(吴国萍, 胡辰辰, 陆 腾, 等). Chinese Journal of Analysis Laboratory(分析试验室), 2023, 42(10): 1364.
[19] Ding Z, Wang C, Song X, et al. ACS Applied Materials & Interfaces, 2023, 15(9): 12570.