Abstract:Surface-enhanced Raman scattering (SERS) is a spectral analysis method with high sensitivity, fast detection speed, and good accuracy, which can non-destructively detect target substances at extremely low concentrations. Therefore, SERS has important application value in environmental analysis, biomedicine, food safety, and other fields. Due to the properties of additive manufacturing, the application scope of printing technology has expanded from graphic communication to the preparation of functional devices. The substrates used in printing technology have many applications and can easily achieve large-scale fabrication. Combining printing technology with SERS substrate preparation methods is beneficial to developing low-cost batch preparation routes for SERS substrates, thereby promoting the development and application of SERS technology. Therefore, it is significant to study and summarize the printing manufacturing methods of SERS substrates. This review summarizes the progress of research on printed SERS substrates. First, the research progress of several typical SERS-active materials and their applications is introduced, such as noble metals, metal chalcogenides, metal oxides, graphene, and graphene oxide. Then, the preparation methods of printed SERS substrates are summarized. The characteristics of conventional rigid and flexible substrates, such as polymers, paper, and fibers, in printed SERS substrates are analyzed. The principles of printing processes such as gravure printing, screen printing, inkjet printing, micro-contact printing, and 3D printing are discussed, and the application of various substrates and printing processes in the printed preparation of SERS substrates is reviewed. Finally, the future research direction of printed SERS substrates is proposed. Compared with traditional device fabrication methods such as photolithography and etching, printing manufacturing is low-cost and particularly suitable for depositing materials on flexible substrates. It has obvious advantages in the large-scale batch fabrication of flexible SERS substrates. At present, there is plenty of room for the development of printed SERS substrates in both printable materials and printing manufacturing processes. In the future, it is necessary to utilize the advantages of printing technology to develop low-cost and environmentally friendly SERS substrates, and promote the popularization and application of SERS technology.
[1] Fleischmann M, Patrick J Hendra P J, Mcquillan A J, et al. Chemical Physics Letters, 1974, 26(2): 163.
[2] Lombardi J R, Birke R L. The Journal of Physical Chemistry C, 2014, 118(20): 11120.
[3] Restaino S M, White I M. Analytica Chimica Acta, 2019, 1060: 17.
[4] Zong C, Xu M, Xu L J, et al. Chemical Reviews, 2018, 118(10): 4946.
[5] Zhang D, Pu H, Huang L, et al. Trends in Food Science & Technology, 2021, 109: 690.
[6] Bharati M S S, Soma V R. Opto-Electronic Advances, 2021, 4(11): 210048.
[7] CHEN Zhen-nan, DU Jing-jing, SHI Jian-bo(陈振楠, 杜晶晶, 史建波). Chemistry(化学通报), 2024, 87(9): 1045.
[8] WANG Jin-yang, XIA Jin, ZHANG Hui-liang(王金阳, 夏 津, 张慧亮). Laser & Optoelectronics Progress(激光与光电子学进展), 2024, 61(9): 0900010.
[9] LIU Yi, WANG Nan, HE Shao-hua, et al(刘 艺, 王 楠, 何绍华, 等). Chinese Journal of Lasers(中国激光), 2024, 51(9): 0907006.
[10] Yi J, You E, Liu G, et al. Nature Nanotechnology, 2024, 19: 1758.
[11] Li Y, Lu C, Zhou S, et al. Sensors and Actuators B: Chemical, 2020, 317: 128182.
[12] FENG Yan-lin, WANG Jian-lin, NING Xin, et al(冯艳林, 王建霖, 宁 鑫, 等). Chinese Journal of Analytical Chemistry(分析化学), 2022, 50(8): 1196.
[13] Chen Z, Su X, Luo H, et al. Materials Chemistry and Physics, 2023, 309: 128335.
[14] ZHU Qi-long, LI Fu, GUO Tao, et al(朱启龙, 李 福, 郭 涛, 等). The Journal of Light Scattering(光散射学报), 2024, 36(1): 72.
[15] Meng X, Dyer J, Huo Y, et al. Langmuir, 2020, 36(13): 3558.
[16] Liu L, Wu Y, Yin N, et al. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 240: 106682.
[17] CHEN Zhong-ting, YANG Song-xin, ZHANG Fu-xin, et al(陈中婷, 杨松鑫, 张福鑫, 等). Animal Husbandry & Veterinary Medicine(畜牧与兽医), 2024, 56(5): 90.
[18] YAO Sen-hao, RAN Na, WANG Ning, et al(姚森浩, 冉 娜, 王 宁, 等). Acta Optica Sinica(光学学报), 2024, 44(21): 2130001.
[19] Lü M, Pu H, Sun D W. Food Chemistry, 2024, 433: 137389.
[20] MA Liang, ZHANG Hong-hua, ZHENG Wei-lu, et al(马 亮, 张洪华, 郑唯璐, 等). Chinese Journal of Inorganic Chemistry(无机化学学报), 2024, 40(9): 1743.
[21] Dixon K, Hasham M, Shayegannia M, et al. Advanced Optical Materials, 2023, 11(22): 2300878.
[22] Kim S J, Hwang J S, Park J E, et al. Nanotechnology, 2021, 32(31): 315303.
[23] Dong J, Li C, Wang Y, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024, 312: 124044.
[24] Zhu C, Zhao Q, Meng G, et al. Nanotechnology, 2020, 31(20): 205303.
[25] Lu Y, Zhang X, Zhao L, et al. Nature Communications, 2023, 14(1): 5860.
[26] WANG Jun-qiao, ZHU Shuang-mei, HE Jin-na, et al(王俊俏, 朱双美, 何金娜, 等). The Journal of Light Scattering(光散射学报), 2012, 24(1): 17.
[27] Lee P C, Meisel D. The Journal of Physical Chemistry, 1982, 86(17): 3391.
[28] Fren S G. Nature-Physical Science, 1973, 241: 20.
[29] Quan Y, Tang X H, Shen W, et al. Advanced Optical Materials, 2022, 10(23): 2201395.
[30] Majumdar D, Jana S, Ray S K. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 278: 121349.
[31] Lei Z, Zhang X, Zhao Y, et al. Nanoscale, 2022, 14(11): 4181.
[32] Tao L, Chen K, Chen Z, et al. Journal of the American Chemical Society, 2018, 140(28): 8696.
[33] Weng C, Luo Y, Wang B, et al. Journal of Materials Chemistry C, 2020, 8(40): 14138.
[34] Tan Y, Jiang H, Wang B, et al. New Journal of Chemistry, 2021, 45(41): 19593.
[35] Mandavkar R, Lin S, Kulkarni R, et al. Journal of Materials Science & Technology, 2022, 107: 1.
[36] Pramanik A, Davis D, Patibandla S, et al. Nanoscale Advances, 2020, 2(5): 2025.
[37] PENG Le, ZHOU Lu, QING Yan-ping, et al(彭 乐, 周 露, 卿艳平, 等). Acta Photonica Sinica(光子学报), 2020, 49(8): 0817002.
[38] Sakir M, Salem S, Sanduvac S T, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124088.
[39] Zhang P, Liu G, Xu W, et al. ACS Omega, 2020, 5(49): 31730.
[40] Chen X, Zhu L, Ma Z, et al. Nanomaterials, 2022, 12(14): 2394.
[41] JIANG Mu, ZHU Yong, ZHANG Jie(蒋 沐, 朱 永, 张 洁). Acta Optica Sinica(光学学报), 2022, 42(4): 0429001.
[42] Yang W, Ou Q, Li C, et al. RSC Advances, 2022, 12(12): 6958.
[43] Yang J, Chen B, Peng J, et al. Plasmonics, 2021, 16: 1059.
[44] Yang B, Shao X, Gu X, et al. Chemical Engineering Journal, 2023, 471: 144522.
[45] LIAN Zheng, LI Juan, LU Chun-qing, et al(炼 铮, 李 娟, 路春清, 等). Chemical Research and Application(化学研究与应用), 2022, 34(10): 2489.
[46] Barveen N R, Wang T J, Chang Y H, et al. Materials Science and Engineering: B, 2022, 282: 115753.
[47] Ling X, Xie L, Fang Y, et al. Nano Letters, 2010, 10(2): 553.
[48] Li X. Journal of Chemistry, 2018, 2018(1): 8050524.
[49] Jiang L, Niu G, Wu H, et al. ACS Applied Nano Materials, 2021, 4(9): 8972.
[50] WANG Shi-qiang, SUN Bing, JIANG Hui-yun, et al(王世强, 孙 冰, 姜慧芸, 等). New Chemical Materials(化工新型材料), 2021, 49(11): 247.
[51] LI Ling, XIAO Gui-na(李 玲, 肖桂娜). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2019, 39(11): 3326.
[52] PU Jia-ling(蒲嘉陵). Digital Printing(数字印刷), 2019, (1): 1.
[53] CUI Zheng(崔 铮). Materials Reports(材料导报), 2020, 34(1): 1009.
[54] Maddipatla D, Narakathu B B, Atashbar M. Biosensors, 2020, 10(12): 199.
[55] Li L, Yang S, Duan J, et al. Spectrochimica Acta Part A—Molecular and Biomolecular Spectroscopy, 2020, 225: 117598.
[56] Weng G, Yang Y, Zhao J, et al. Materials Chemistry and Physics, 2020, 253: 123416.
[57] Emamian S, Eshkeiti A, Narakathu B B, et al. Sensors and Actuators B: Chemical, 2015, 217: 129.
[58] Li H, Zhang H, Luo W, et al. Analytica Chimica Acta, 2022, 1229: 340380.
[59] Jaitpal S, Chavva S R, Mabbott S. ACS Omega, 2022, 7(3): 2850.
[60] Miccichè C, Arrabito G, Amato F, et al. Analytical Methods, 2018, 10(26): 3215.
[61] Zhu Z, Yoshikawa H, Saito M, et al. Electroanalysis, 2018, 30(7): 1432.
[62] Liu X, Ma J, Jiang P, et al. ACS Applied Materials & Interfaces, 2020, 12(40): 45332.
[63] Tang Z, Wu J, Liu X, et al. Particle & Particle Systems Characterization, 2021, 38(12): 2100160.
[64] He S, Chua J, Tan E K M, et al. RSC Advances, 2017, 7(27): 16264.
[65] Tegegne W A, Su W N, Beyene A B, et al. Microchemical Journal, 2021, 168: 106349.
[66] Fateixa S, Pinheiro P C, Nogueira H I S, et al. Journal of Molecular Structure, 2019, 1185: 333.
[67] XU Tao, YU Lu, LI Yi, et al(徐 涛, 俞 露, 李 易, 等). Journal of Nanjing University of Science and Technology(南京理工大学学报), 2024, 48(3): 390.
[68] Maddipatla D, Janabi F, Narakathu B B, et al. Sensing and Bio-Sensing Research, 2019, 24: 100281.
[69] Schube J, Klawitter M, Linse M, et al. Energy Technology, 2024, 12(7): 2400066.
[70] Wu W, Liu L, Dai Z, et al. Scientific Reports, 2015, 5(1): 10208.
[71] Ma Y, Wang Y, Luo Y, et al. Analytical Methods, 2018, 10(38): 4655.
[72] Qu L L, Li D W, Xue J Q, et al. Lab on a Chip, 2012, 12(5): 876.
[73] Cui S, Dai Z, Tian Q, et al. Journal of Materials Chemistry C, 2016, 4(26): 6371.
[74] GAN Zhen-fei, WANG Lu, GUO Dan, et al(甘振飞, 汪 璐, 郭 丹, 等). Chinese Journal of Analytical Chemistry(分析化学), 2019, 47(04): 613.
[75] Li D, Brunie J, Sun F, et al. Nanoscale Advances, 2022, 4(23): 5037.
[76] Ricci S, Buonomo M, Casalini S, et al. Nanoscale Advances, 2023, 5(7): 1970.
[77] Dustov M, Golovina D I, Polyakov A Y, et al. Sensors, 2018, 18(2): 521.
[78] Joshi P, Santhanam V. Industrial & Engineering Chemistry Research, 2018, 57(15): 5250.
[79] Sheng W, Li W, Tan D, et al. ACS Applied Materials & Interfaces, 2020, 12(8): 9797.
[80] ZHANG Di, ZHANG Yan, KONG Lu-yao, et al(张 笛, 张 琰, 孔路瑶, 等). Transducer and Microsystem Technologies(传感器与微系统), 2022, 41(5): 1.
[81] Wang W, Vikesland P J. Analytical Chemistry, 2023, 95(49): 18055.
[82] Kim W, Kim W, Bang D, et al. Chemosensors, 2023, 11(6): 340.