Applications of Fabry-Perot Interferometer in Remote Sensing Detection
JIN Kang1, ZHANG Nan1, LIU Bing2*
1. Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
2. Department of Disease Control and Prevention, Rocket Force Characteristic Medical Center, Beijing 100088, China
Abstract:Remote spectral detection is an important way to explore large-scale space and matter, which plays critical roles in astronomy, meteorology, and the deep sea. However, detecting remote and often weak spectra poses high requirements for the performance of spectrometers. According to the spectral performance evaluation standard proposed by Jacquinot, compared with other spectral systems (grating spectrometer, prism spectrometer, etc.), the Fabry Perot (F-P) interferometer has a large aperture and high spectral resolution, which possesses the intrinsic advantage in the field of remote weak light detection. Since Fabry first used the F-P interferometer for astronomical observation in 1914, the F-P interferometer has been widely used in remote spectral measurement, and various improved F-P interferometers have been developed in recent years. Traditional F-P interferometers mainly face three problems when used in remote spectral detection: narrow free spectral range, difficult installation and adjustment of large aperture F-P interferometers, and unconcentrated spectral energy induced by the circular interference structures. This article introduces three typical improved F-P interferometers, including the cascaded F-P interferometer that greatly extends the free spectral range, the rotating scanning F-P interferometer that eases the adjustment and is suitable for extreme environments,and the circle-to-line interferometer optical system(CLIO) that converts interference rings to interference lines with improved energy concentration.This article provides a systematic summary of the important applications of the F-P interferometer in meteorology, astronomy, and the deep sea. In meteorology, a large-aperture F-P interferometer for measuring wind speeds in the atmosphere's mesosphere and thermosphere was introduced, and a German Heisenberg high-precision F-P interferometer for measuring trace gases and their isotopes in the atmosphere was also presented. In astronomy, a cascaded F-P interferometer designed by the University of Wisconsin in the United States for studying interstellar material emission lines was introduced. In the field of oceanography, the main application examples of domestic F-P interferometers for measuring Brillouin scattering were introduced, including the underwater Brillouin scattering system designed by Beijing Normal University in 2004 and the spaceborne Brillouin scattering system designed by Shanghai Jiao Tong University in 2021. Finally, this article proposes that spectral recognition accuracy and thermal stability are difficulties that need to be solved in the future applications of F-P interferometers in remote spectral measurement.
Key words:Fabry-Perot interferometer; Remote weak signal detection; Astronomy; Meteorology;Oceanography
[1] Bradač M, Erben T, Schneider P, et al. Astron Astrophys,2005,437:49.
[2] Strassmeier K G, Rice J B. Astronomy and Astrophysics, 1998, 339: 497.
[3] Popovic L ( Cˇ ). New Astronomy Reviews, 2012, 56(2-3): 74.
[4] Durrer R. The Cosmic Microwave Background. Cambridge University Press, 2020: 163.
[5] Popovic L Č, Shapovalova A I, Ilic D, et al. Astronomy & Astrophysics, 2011, 528: A130.
[6] Jarrett A H. Irish Astronomical Journal, 1968, 8: 212.
[7] Chandrasekhar T, Debiprasad C, Desai J N, et al. Optical Engineering, 1988, 27(12): 1088.
[8] Molina R, Núñez J, Cortijo F J, et al. IEEE Signal Processing Magazine, 2001, 18(2): 11.
[9] Ko P, Scott J R, Jovanovic I. Optics Communications, 2015, 357: 95.
[10] Franklin D L, Schlegel W, Rushmer R F. Science, 1961, 134(3478): 564.
[11] Effenberger A J, Scott J R. Applied Optics, 2012, 51(7): B165.
[12] Pantalone B, Kudenov M W. Celestial Mechanics and Dynamical Astronomy, 2018, 130(12): 80.
[13] Tolansky S, Ranade J. Monthly Notices of the Royal Astronomical Society, 1949, 109(1): 86.
[14] Burrage M D, Arvin N, Skinner W R, et al. Journal of Geophysical Research: Space Physics, 1994, 99(A8): 15017.
[15] Hays P B, Abreu V J, Dobbs M E, et al. Journal of Geophysical Research: Atmospheres, 1993, 98(D6): 10713.
[16] Danehy P M, Alderfer D W. Survey of Temperature Measurement Techniques for Studying Underwater Shock Waves. International Symposium on Interdisciplinary Shock Wave Research,2004: 22.
[17] Jones T G, Kaganovich D, Helle M H, et al. Intense Underwater Laser Propagation, Ionization and Heating for Remote Shaped Plasma Generation. 2016 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2016.
[18] Bukin O A, Golik S S, Il'in A A, et al. Atmospheric and Oceanic Optics, 2009, 22(2): 209.
[19] XU Jia-qi, WANG Yuan-qing, XU Yang-rui, et al(许佳琪,王元庆,徐杨睿,等). Infrared and Laser Engineering(红外与激光工程), 2021, 50(6): 20211036.
[20] Gordon H R. Ocean Remote Sensing Using Lasers. US Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1980.
[21] Yuan D, Chen P, Mao Z, et al. Optics Express, 2021, 29(26): 43049.
[22] Labutin T A, Lednev V N, Ilyin A A, et al. Journal of Analytical Atomic Spectrometry, 2016, 31(1): 90.
[23] Angly F E, Felts B, Breitbart M, et al. PLoS Biology, 2006, 4(11): e368.
[24] Schorstein K, Fry E S, Walther T. Applied Physics B, 2009, 97(4): 931.
[25] Rodriguez M, Bourayou R, Méjean G, et al. Physical Review E, 2004, 69(3): 036607.
[26] Huang Y, Harilal S S, Bais A, et al. Progress Towards Machine Learning Methodologies for Laser-Induced Breakdown Spectroscopy with an Emphasis on Soil Analysis. arXiv preprint arXiv: 2208. 07414, 2022.
[27] Gurevich E L, Hergenröder R. Applied Spectroscopy, 2007, 61(10): 233A.
[28] Schaffer C B, Nishimura N, Glezer E N, et al. Optics Express, 2002, 10(3): 196.
[29] Desai J N. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 1984, 93(3): 189.
[30] Jacquinot P. Reports on Progress in Physics, 1960, 23(1): 267.
[31] Sidles J A, Sigg D. Physics Letters A, 2006, 354(3): 167.
[32] Wu Q, Gablehouse R D, Solomon S C, et al. A New Fabry-Perot Interferometer for Upper Atmosphere Research. Instruments, Science, and Methods for Geospace and Planetary Remote Sensing. SPIE, 2004, 5660: 218.
[33] Jacquinot P. Jounal of the Optical Society of the America, 1954, 44(10): 761.
[34] WANG Ai-guo, TIAN Yan-ling, LI Xin-e(王爱国, 田艳玲, 李新娥). Metrology & Measurement Technology(计测技术), 2005, 25(6): 25.
[35] Poulter G, Jennings R E. Infrared Physics, 1983, 23(1): 43.
[36] Roesler F L. 12. Fabry-Perot Instruments for Astronomy. Methods in Experimental Physics. Academic Press, 1974, 12: 531.
[37] Xia G, Wu Z, Liu M, et al. Optik, 2003, 114(12): 521.
[38] Chabbal R V. Journal de Physique et le Radium, 1958, 19(3): 295.
[39] Hernandez G. Applied Optics, 1966, 5(11): 1745.
[40] Palik E D, Boukari H, Gammon R W. Applied Optics, 1996, 35(1): 38.
[41] Cleary J W, Fredricksen C J, Muravjov A V, et al. Scanning Fabry-Perot Filter for Terahertz Spectroscopy Based on Silicon Dielectric Mirrors. Terahertz and Gigahertz Electronics and Photonics VI. SPIE, 2007, 6472: 64720E.
[42] Bates D R, Spitzer L. The Astrophysical Journal, 1951, 113(3): 441.
[43] Kuhn H. Journal de Physique et le Radium, 1950, 11(7): 425.
[44] Chiao R Y, Townes C H, Stoicheff B P. Physical Review Letters, 1964, 12(21): 592.
[45] Bradley D J, Bates B, Juulman C O L, et al. Journal de Physique Colloques, 1967, 28(C2): C2-280.
[46] Vaughan A H. Annual Review of Astronomy and Astrophysics, 1967, 5: 139.
[47] Platz P. Applied Optics, 1967, 6(7): 1205.
[48] Hirschberg J G, Byrne J D. Rapid Underwater Oceanmeasurements Using Brillouin Scattering. Ocean Optics VII. SPIE, 1984, 489: 270.
[49] Pogge R W, Atwood B, Byard P L, et al. Publications of the Astronomical Society of the Pacific, 1995, 107(718): 1226.
[50] Skelton B P, Waller W H, Gelderman R F, et al. Publications of the Astronomical Society of the Pacific, 1999, 111(758): 465.
[51] Bland J, Tully R B. The Astronomical Journal, 1989, 98: 723.
[52] Haffner L M, Reynolds R J, Tufte S L, et al. The Astrophysical Journal Supplement Series, 2003, 149(2): 405.
[53] Rangwala N, Williams T B, Pietraszewski C, et al. arXiv preprint arXiv: 0710. 3750, 2007.
[54] Cavallini F. Solar Physics, 2006, 236(2): 415.
[55] Puschmann K G, Denker C J, Balthasar H, et al. Optical Engineering, 2013, 52(8): 081606.
[56] Veenendaal I, Naylor D, Gom B, et al. Review of Scientific Instruments, 2020, 91(8): 083108
[57] Fisher D J, Makela J J, Meriwether J W, et al. Journal of Geophysical Research: Space Physics, 2015, 120(8): 6679.
[58] Poglitsch A, Beeman J W, Geiz N, et al. International Journal of Infrared and Millimeter Waves,1991, 12: 859.
[59] Koreeda A, Saikan S. Review of Scientific Instruments, 2011, 82(12): 126103.
[60] Wu J, Wang J, Hays P B. Applied Optics, 1994, 33(34): 7823.
[61] McKay J A. Applied Optics, 1999, 38(27): 5851.
[62] Aschauer R, Asenbaum A, Geri H. Applied Optics, 1990, 29(7): 953.
[63] Hays P B. Applied Optics, 1990, 29(10): 1482.
[64] Mock R, Hillebrands B, Sandercock R. Journal of Physics E: Scientific Instruments, 1987, 20(6): 656.
[65] Shiokawa K, Otsuka Y, Oyama S, et al. Earth, Planets and Space, 2012, 64(11): 1033.
[66] Nakamura Y, Shiokawa K, Otsuka Y, et al. Earth, Planets and Space, 2017, 69: 57.
[67] Kuhn J, Bobrowski N, Wagner T, et al. Atmospheric Measurement Techniques, 2021, 14(12): 7873.
[68] Mahavarkar P, Sriram S, Joshi B, et al. Results in Optics, 2023, 13: 100524.
[69] Mock R, Hillebrands B, Sandercock R. Journal of Physics E: Scientific Instruments, 1987, 20(6): 656.
[70] Comez L, Masciovecchio C, Monaco G, et al. Solid State Physics,2012, 63: 1.
[71] Gong W, Dai R, Sun Z, et al. Applied Physics B, 2004, 79(5): 635.
[72] Shi J, Ouyang M, Gong W, et al. Applied Physics B, 2008, 90(3): 569.
[73] JIN Kang, ZHAO Xing, ZHANG Nan, et al(金 康, 赵 星, 张 楠, 等). Chinese Journal of Lasers(中国激光), 2023, 50(7): 0708006.
[74] Zhang Z, Yan J, Kuriyagawa T. International Journal of Extreme Manufacturing, 2019, 1(2): 022001.
[75] Li S, Di H, Wang Q, et al. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 256: 107298.