光谱学与光谱分析
|
NO(3+1)共振增强的多光子离化谱
张贵银,靳一东
华北电力大学数理学院,河北 保定 071003
The Resonance-Enhanced Ionization Spectrum of NO via (3+1) Multiphoton Process
ZHANG Gui-yin,JIN Yi-dong
College of Mathematics and Physics,North China Electric Power University,Baoding 071003,China
摘要 : 用皮秒脉冲高功率Nd∶YAG激光器抽运的光学参量发生/放大器作激发源,获得了NO分子在420~500 nm波长范围内的多光子离化谱,光谱图呈现分离谱的特征,表明在该波长区间NO分子以多光子共振方式离化。离化信号随激光强度的近四次方变化关系表明,在420~500 nm波长范围内NO分子吸收4个光子而离化。通过对谱线的标识,首次分离出NO分子以E 2 Σ激发电子态为中间共振态的(3+1)多光子离化光谱序列,由谱线序列峰值波长得到NO分子E 2 Σ 电子态的振动常数,从而实现了采用多光子离化技术对该态能级结构的实验研究。
关键词 :NO;共振增强多光子离化;E 2 Σ 态;离化通道
Abstract :The resonance-enhanced multi-photon ionization (REMPI) spectrum of NO in the region of 420-500 nm was obtained with the optical parameter generator and amplifier pumped by a Nd∶YAG laser as the radiation source. The spectrum presents the characteristic of banded structure. This indicates that NO molecule is ionized in a resonant manner and via a multi-photon process in this wavelength region. The fact that the variation of the ion signal intensity versus the laser intensity is near quartic suggests that the NO molecule is ionized by a four-photon process. Based on the theoretical calculation,a spectral progression that comes from the (3+1) multiphoton process and via E 2 Σ intermediate resonant state is ascribed. The ionization pathway of NO molecule can be expressed as NO(X 2 Π )3hν →NO(E 2 Σ )hν →NO+ +e. The vibration constants of NO E 2 Σ state were obtained from analyzing the result. So the study of the energy level structure of NO E 2 Σ state by the technique of REMPI was realized for the first time.
Key words :NO;REMPI;E 2 Σ state;Ionization pathway
收稿日期: 2006-04-12
修订日期: 2006-08-03
通讯作者:
张贵银
E-mail: gyzhang65@yahoo.com.cn
引用本文:
张贵银,靳一东. NO(3+1)共振增强的多光子离化谱[J]. 光谱学与光谱分析, 2007, 27(08): 1469-1472.
ZHANG Gui-yin,JIN Yi-dong. The Resonance-Enhanced Ionization Spectrum of NO via (3+1) Multiphoton Process. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2007, 27(08): 1469-1472.
链接本文:
https://www.gpxygpfx.com/CN/Y2007/V27/I08/1469
[1] Peng W X,Ledinghand K W D. Analyst,1995,120: 2537. [2] Rothe R W,Andresen P. Appl. Opt.,1997,36: 3971. [3] Shu J,Bar I,Rosenwaks S. Appl. Phys.,2000,B70: 621. [4] Decastro A J,Meneses J,Briz S,et al. Re. Sci. Instru.,1999,70: 3156. [5] Reeves M,Musculus M,Farrell P. Appl. Opt.,1998,37: 6627. [6] Pasel R L,Sausa R C . Appl. Opt.,2000,39(15): 2487. [7] Zakheim D,Johnson P. J. Chem. Phys.,1978,68: 3644. [8] Zhang Lianshui,Zhang Guiyin,Yang Xiaodong,et al. Chinese Optics Letters,2003,1(4): 190. [9] ZHANG Gui-yin,ZHANG Lian-shui,YANG Xiao-dong,et al(张贵银,张连水,杨晓冬,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2004,24(11): 1293. [10] ZHANG Gui-yin,ZHANG Lian-shui,YANG Xiao-dong,et al(张贵银,张连水,杨晓冬,等). Acta Optica Sinica(光学学报),2003,23(9): 1119. [11] Wang Senming,Cong Shulin,Yuan Kaijun,et al. Chem. Phys. Lett.,2006,417: 164. [12] Sun Z G,Cong S L,Lou N Q. Chem. Phys. (Chem.),2002,3: 976. [13] Shan H L,Jun H. Rev. Sci. Instrum.,1997,68: 2891. [14] Wang S M,Cong S L,Yuan K J,et al. Chem. Phys. Lett.,2005,401: 509. [15] Herzberg G(赫兹堡). Molecular Spectra and Molecular Structure,Vol.1(分子光谱与分子结构·第1卷). Beijing: Science Press(北京: 科学出版社),1986. [16] Cremaschi P. J. Chem. Phys.,1981,75: 3944.
[1]
关建飞,陈 陶. 金属-电介质-金属波导耦合开口环形腔的高灵敏度传感特性研究 [J]. 光谱学与光谱分析, 2023, 43(06): 1746-1751.
[2]
廖逸民,闫胤洲,王 强,杨立学,潘永漫,邢 承,蒋毅坚. ZnO微米晶的激光制备装置及发光性能研究 [J]. 光谱学与光谱分析, 2022, 42(10): 3000-3005.
[3]
郑玉霞,帕尔哈提江·吐尔孙,热米莱·阿卜来提,程 龙,马登攀. 多分散Au-Ag合金纳米球的光谱消光法反演 [J]. 光谱学与光谱分析, 2022, 42(10): 3039-3045.
[4]
徐 恒,刘浩然,季祥光,李启华,刘国华,欧金萍,朱鹏程. 基于MAX-DOAS的上海市区NO2 对流层柱浓度研究 [J]. 光谱学与光谱分析, 2022, 42(09): 2720-2725.
[5]
徐冬冬,于 欣,杜丽敏,毕国玲. 基于混沌与快速小波变换的多光谱图像压缩加密算法 [J]. 光谱学与光谱分析, 2022, 42(09): 2976-2982.
[6]
王淦麟,柳 倩,李定明,杨素亮,田国新. 基于水内标的NO- 3 ,SO2- 4 ,ClO- 4 拉曼光谱定量分析研究 [J]. 光谱学与光谱分析, 2022, 42(06): 1855-1861.
[7]
. TDLAS气体检测系统仿真与影响因素分析 [J]. 光谱学与光谱分析, 2021, 41(10): 3262-3268.
[8]
. In First Time: Synthesis and Spectroscopic Interpretations of Manganese(Ⅱ), Nickel(Ⅱ) and Mercury(Ⅱ) Clidinium Bromide Drug Complexes [J]. 光谱学与光谱分析, 2021, 41(10): 3316-3320.
[9]
. 厚度对未掺杂ZnO薄膜光谱性能的影响 [J]. 光谱学与光谱分析, 2021, 41(09): 2835-2838.
[10]
. Spectroscopic Investigations for the Six New Synthesized Complexes of Fluoroquinolones and Quinolones Drugs With Nickel(Ⅱ) Metal Ion: Infrared and Electronic Spectroscopy [J]. 光谱学与光谱分析, 2021, 41(06): 1976-1981.
[11]
. Spectroscopic Characterizations of Metal-Complexes of 4-Hydroxybenzoic Acid With the Ni(Ⅱ), Mn(Ⅱ), and Cu(Ⅱ) Ions [J]. 光谱学与光谱分析, 2021, 41(06): 1971-1975.
[12]
. Synthesis, Structural, Spectroscopic Characterization and Biological Properties of the Zn(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ), and Mn(Ⅱ) Complexes With the Widely Used Herbicide 2,4-Dichlorophenoxyacetic Acid [J]. 光谱学与光谱分析, 2021, 41(06): 1982-1987.
[13]
. 基于卫星高光谱遥感的2007年—2017年新疆地区大气NO2 时空变化趋势分析 [J]. 光谱学与光谱分析, 2021, 41(05): 1631-1638.
[14]
. Ag掺杂氧化锌纳米材料的制备及高压相变拉曼光谱研究 [J]. 光谱学与光谱分析, 2021, 41(02): 484-488.
[15]
. 天山北坡绿洲城市车流量与对流层NO2 垂直柱浓度关系研究 [J]. 光谱学与光谱分析, 2021, 41(02): 345-353.