Abstract:This paper proposes an improved narrow-band model based on a correction function for calculating infrared radiation from two types of nuclear cruise missile plumes. The model replaces narrow-band parameters in the Curtis-Godson (CG) approximation with path-equivalent narrow-band parameters to address accuracy degradation in non-uniform combustion systems. Compared with experimental data from Reference[1], the improved narrow-band model with correction function demonstrates better alignment with experimental results than traditional CG-based narrow-band models, showing accuracy improvements of 13.29%, 18.01%, and 8.4% in the 2.7, 4.3, and 3~5 μm bands, respectively. Building on this foundation, flow field parameters varying along trajectory points for AGM-86B-type and AGM-158B-type missiles are calculated. By solving the radiative transfer equation using the Line of Sight (LOS) method, an infrared radiation calculation model for nuclear cruise missile plumes is established, enabling computation and analysis of infrared radiation characteristics at flight altitudes ranging from 1 to 20 km. Results indicate that for AGM-86B-type missiles, radiation intensities in the 2.7 and 4.3 μm bands exhibit similar altitude-dependent trends, reaching peak signals at 5 km altitude during the latter half of the flight trajectory. For AGM-158B-type cruise missiles during their flight trajectory from 20 to 1 km, the radiation intensity in the 4.3 μm band is consistently higher than that in the 2.7 μm band. These findings provide theoretical support for early-stage missile type identification and interception of these two missile categories.
杨 杰,白 璐,李金录,刘睿曦. 基于改进窄谱带方法的类核巡航导弹尾焰红外光谱辐射特性研究[J]. 光谱学与光谱分析, 2025, 45(12): 3324-3331.
YANG Jie, BAI Lu, LI Jin-lu, LIU Rui-xi. Study on Infrared Spectral Radiation Characteristics of Exhaust Plumes From Nuclear-Like Cruise Missiles Based on Modified Narrow-Band
Method. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(12): 3324-3331.
[1] Avital G, Cohen Y, Gamss L, et al. Journal of Thermophysics and Heat Transfer, 2001, 15(4): 377.
[2] Lowther A B. Strategic Studies Quarterly, 2017, 11(3): 34.
[3] Evans D, Schwalbe J. The Long-Range Standoff (LRSO) Cruise Missile and Its Role in Future Nuclear Forces, Applied Physics Laboratory, Johns Hopkins University, 2017.
[4] Majumdar S. Vayu Aerospace and Defence Review, 2021,(1): 128.
[5] LIU Ying(刘 颖). Aerodynamic Missile Journal(飞航导弹), 2013, (11): 12.
[6] CAI Hong-hua, NIE Wan-sheng, SU Ling-yu, et al(蔡红华, 聂万胜, 苏凌宇,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2019, 39(7): 1999.
[7] Li J, Bai L, Zhang L, et al. International Journal of Heat and Mass Transfer, 2023, 216: 124606.
[8] Zhang W, Shuai Y, Gao P, et al. Infrared Physics & Technology, 2024, 139: 105312.
[9] Zhu T, Sun Y, Niu Q, et al. International Journal of Heat and Mass Transfer, 2024, 229: 125663.
[10] Chen Y, He B, Liu L, et al. International Journal of Heat and Mass Transfer, 2025, 241: 126765.
[11] Hou S, Wang Q, Hu H, et al. International Journal of Thermal Sciences, 2025, 210: 109567.
[12] LIU Zun-yang, SHAO Li, WANG Ya-fu, et al(刘尊洋, 邵 立, 汪亚夫,等). Acta Optica Sinica(光学学报), 2013, 33(4): 9.
[13] BAO Xing-dong, YU Xi-long, WANG Zhen-hua, et al(包醒东, 余西龙, 王振华,等). Journal of Propulsion Technology(推进技术), 2021, 42(3): 569.
[14] Niu Q, Duan X, Meng X, et al. Infrared Physics & Technology, 2019, 99: 28.
[15] Ibgui L, Hartmann J-M. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 75(3): 273.
[16] Rivière P, Soufiani A. International Journal of Heat and Mass Transfer, 2012, 55(13-14): 3349.
[17] Zheng S, Yang Y, Zhou H. International Journal of Heat and Mass Transfer, 2019, 129: 1232.
[18] Qi C, Zheng S, Zhou H. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 197: 45.
[19] Zheng S, Zhang M, Na M, ea al. ES Energy & Environment, 2022, 17(4): 33.
[20] Zheng S, Sui R, Sun Y, et al. ES Energy & Environment, 2021, 12(2): 4.
[21] Krakow B, Babrov H J, Maclay G J, et al. Applied Optics, 1966, 5(11): 1791.
[22] Soufiani A, Hartmann J M, Taine J. Journal of Quantitative Spectroscopy and Radiative Transfer, 1985, 33(3): 243.
[23] Ludwig C B, Malkmus W, Reardon J, et al. Handbook of Infrared Radiation from Combustion Gases,Washington: Space Administration, 1973.
[24] Yamamoto G, Aida M, Yamamoto S. Journal of Atmospheric Sciences, 1972, 29(6): 1150.
[25] Malkmus W. Journal of the Optical Society of America, 1967, 57(3): 323.
[26] Young S J. Journal of Quantitative Spectroscopy and Radiative Transfer, 1977, 18(1): 1.
[27] Li J, Bai L, Bai J, et al. Infrared Physics & Technology, 2022, 125: 104260.
[28] Sun Y, Niu Q, Zhu T, et al. Journal of Quantitative Spectroscopy and Radiative Transfer, 2024, 328: 109146.
[29] Burdette G W, Lander H R, McCoy J R. Journal of Energy, 1978, 2(5): 289.
[30] Gordon S, McBride B J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. Part 1: Analysis,NASA Reference Publication 1311, 1994.
[31] Niu Q, He Z, Dong S. Chinese Journal of Aeronautics, 2017, 30(3): 1101.