Research on Identification of Non-Directional Doping of Egg White
Powder Based on Near Infrared Spectroscopy and LOF
ZHU Zhi-hui1, 2, LI Wo-lin1, HAN Yu-tong1, YE Wen-jie1, JIN Yong-tao1, WANG Qiao-hua1, 2, MA Mei-hu3
1. College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
2. Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River, Ministry of Agriculture, Wuhan 430070, China
3. College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
Abstract:Egg white powder adulteration identification technology is of great significance to ensure the quality and safety of egg powder, however, the traditional biomolecular detection methods are complicated and time-consuming, and the adulteration identification model for egg white powder is still mainly a directional identification model, which has a limited detection range and can not effectively cover all the possible adulterants, so it is urgently needed to develop a fast, accurate and generalized method for egg white powder adulteration identification. In this study, we introduced near-infrared spectroscopy detection technology and constructed a LOF non-directional identification model. The model is an unsupervised single classification model, and MSC preprocessing and CARS wavelength screening processing are added to the original model to enhance the model's ability to extract spectral features, reduce noise interference, and lower computational requirements. The experimental results show that the detection rate of the LOF non-directional identification model for adulterated egg white powder can reach 93.6%. Its accuracy, precision, recall, and F1 score reach 93.6%, 95.5%, 93.6%, and 94.5%, respectively. For egg white powder with an adulteration concentration of more than 15%, the total accuracy rate (AAR) of both test sets reaches 100%, and the average detection time (AATS) can be as low as 0.001 1 s. Compared to other non-directional algorithms, this algorithm has higher accuracy and is more generalizable than traditional directional models, making it more suitable for identifying egg white powder adulteration with a wide variety of adulteration types in the market. This study can provide a theoretical basis for the subsequent development of a portable near-infrared spectroscopy detector for detecting egg white powder quality.
Key words:Egg white powder; Near-infrared spectroscopy; Authenticity detection; Local outlier factor detection algorithm; Untargeted detection
祝志慧,李沃霖,韩雨彤,叶文杰,金永涛,王巧华,马美湖. 基于近红外光谱和LOF的蛋清粉非定向掺杂鉴别研究[J]. 光谱学与光谱分析, 2025, 45(06): 1768-1775.
ZHU Zhi-hui, LI Wo-lin, HAN Yu-tong, YE Wen-jie, JIN Yong-tao, WANG Qiao-hua, MA Mei-hu. Research on Identification of Non-Directional Doping of Egg White
Powder Based on Near Infrared Spectroscopy and LOF. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(06): 1768-1775.
[1] CHI Yu-jie, ZHAO Ying, BAO Zhi-jie, et al(迟玉杰,赵 英,鲍志杰,等). China Poultry(中国家禽), 2014, 36(19): 2.
[2] HAN Shuai-juan, LIN Hui-song, YANG Feng-fan, et al(韩帅娟,林辉松,杨丰帆,等). Chinese Journal of Animal Science(中国畜牧杂志), 2019, 55(5): 20.
[3] MA Shuang, LIU Jing-bo, WANG Er-lei(马 爽,刘静波,王二雷). Chinese Poultry(中国家禽), 2010, 32(24): 41.
[4] WANG Jia-bin, LIN Jun, QU Ke-xin, et al(王家镔,林 军,曲可欣,等). Food Science and Technology(食品科技), 2020, 45(3): 80.
[5] ZHU Zhi-hui, YANG Kai, WANG Yu-chun, et al(祝志慧,杨 凯,王羽纯,等). China Poultry(中国家禽), 2023, 45(6): 76.
[6] LI Jiong, WU Qiong, JIANG Hai, et al(励 炯,吴 琼,江 海,等). Food and Machinery(食品与机械), 2023, 39(5): 43.
[7] ZHAO Juan-juan, YE Shun, XU Ke, et al(赵娟娟,叶 顺,徐 可,等). Journal of Henan Normal University (Natural Science Edition)[河南师范大学学报(自然科学版)], 2021, 49(1): 45.
[8] LIU Ping, MA Mei-hu(刘 平,马美湖). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2018, 38(1): 246.
[9] YANG Kai, HE Yu-ting, LI Wo-lin, et al(杨 凯,何昱廷,李沃霖,等). Journal of Huazhong Agricultural University(华中农业大学学报), 2024, 43(2): 264.
[10] HUANG Xun-hua, ZHANG Feng-bin, FAN Hao-yi, et al(黄训华,张凤斌,樊好义,等). Journal of Computer Research and Development(计算机研究与发展), 2021, 58(8): 1655.
[11] WU Sheng-kai, SHAO Xing, WANG Cui-xiang, et al(吴晟凯,邵 星,王翠香,等). Journal of Mechanical Strength(机械强度), 2024, 46(3): 527.
[12] ZHONG Yu, HUANG Zhen-nan, XIE Hui-chao, et al(钟 昱,黄振南,谢惠超,等). Journal of Guangxi University(Natural Science Edition)[广西大学学报(自然科学版)], 2024, 49(3): 563.
[13] CHEN Li-chao, YANG Yu-bing, CHEN Zhe-yu, et al(陈立超,杨瑜冰,陈哲宇,等). Modern Instrumentation and Medicine Treatment(现代仪器与医疗), 2024, 30(3): 40.
[14] XIA Qi, HE Tian-lun, HUANG Zhi-xuan, et al(夏 启,何天伦,黄志轩,等). Food Science(食品科学), 2023, 44(12): 315.
[15] ZONG Jing, BU Han-ping, CHEN Da, et al(宗 婧,卜汉萍,陈 达,等). Journal of Instrumental Analysis(分析测试学报), 2019, 38(10): 1187.
[16] PU Qian-hui, ZHANG Zi-yi, XIAO Tu-gang, et al(蒲黔辉,张子怡,肖图刚,等). Bridge Construction(桥梁建设), 2024, 54(3): 15.
[17] CHENG Zhi-lei, ZHANG Guo-bao, HUANG Yong-ming(程志磊,章国宝,黄永明). Journal of Beijing University of Chemical Technology(Natural Science)[北京化工大学学报(自然科学版)], 2024, 51(1): 121.
[18] Chen J, Huang H, Cohn A G, et al. International Journal of Mining Science and Technology, 2022, 32(2): 309.
[19] Xu X L, Chen W, Sun Y F. Journal of Systems Engineering and Electronics, 2019, 30(6): 1182.
[20] Breunig M M, Kriegel H P, Ng R T, et al. SIGMOD Record, 2000, 29(2): 93.
[21] Xu H, Pang G, Wang Y,et al. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(12): 12591.