Examination of the Correlation Between Shortwave Infrared Spectra and Mineral Geochemical Characteristics of Muscovite in the Pegmatite-Type Lithium Deposit in Lijiagou, Western Sichuan
HAN Jing-rui1, RAN Feng-qin1*, PENG Bo1, CHEN Ran3, TANG Bo2, FENG Da-bo1, YANG Yang1, ZHAO Yuan1, GU Chun-jin2, CHEN Hao4, ZHAO Heng-bing5
1. College of Earth and Planetary Sciences, Chengdu University of Technology, Chengdu 610059, China
2. Sichuan Institute of Comprehensive Geological Survey, Chengdu 610081, China
3. Department of Natural Resources of Sichuan Province, Chengdu 610072, China
4. The 5th Geological Brigade of Sichuan, Chengdu 610036, China
5. Sichuan Dexin Mining Resources Co., Ltd., Aba Tibetan and Qiang Autonomous Prefecture 624199, China
Abstract:The Liajiagou deposit, a massive granite pegmatite-type lithium deposit, is located in the western part of Sichuan Province. Currently, the shortwave infrared spectroscopic properties of muscovite in the Liajiagou deposit remain unknown, and a deeper understanding of the correlation between its chemical composition and spectral characteristics is required. This study examines multiple generations and types of muscovite in the pegmatite of the Li Jiagou ore deposit. Microstructural observations, shortwave infrared (SWIR) spectroscopy, and electron probe microanalysis (EPMA) were performed. The muscovite in the pegmatite was classified into three generations: ①Primary muscovite (MS), formed during the magmatic stage, is characterized by high concentrations of aluminum (Al) and potassium (K). The absorption peak of muscovite at 2 200 nm (Pos2200) displays a limited variation range, ranging from 2 201 to 2 202.8 nm. The absorption depth at this peak (2200 Dep) often remains below 0.25. Additionally, the illite crystallinity index (IC value) typically falls within a narrow range of 1 to 1.5. ② During the magma-hydrothermal transition stage, transition muscovite (TM) becomes enriched in Li elements as a result of the exsolution of volatile-rich fluids. The Li2O content in TM varies between 2.53% and 6.22%. Additionally, Pos2200 demonstrates a concentration peak centered at 2 200~2 201 nm. Most 2200 Dep values are below 0.5, whereas IC values remain consistently high, often exceeding 4. ③Hydrothermal muscovite (HM), predominantly formed via fluid metasomatism, exhibits the shortest Pos2200 values, with 2200 Dep readings mostly below 0.4 and IC values ranging from 2 to 4. The Al—OH absorption peak of muscovite in the Lijiagou pegmatite indicates variations in the elemental composition, including Si, Al, Fe, Li, and other constituents. During the transition from the muscovite (MS) stage to the topaz-muscovite (TM) stage, changes in elemental composition and substitution mechanisms primarily influence the shift in muscovite's characteristic absorption peak wavelength. In contrast, temperature becomes the primary determinant during the hydrothermal (HM) stage. Comprehensive research highlights the potential of the characteristic absorption wavelength (2 200~2 201 nm) of the muscovite Al—OH peak, coupled with an illite crystallinity value greater than 4, as effective indicators for mineral exploration in the Lijiagou pegmatite.
韩警锐,冉凤琴,彭 勃,陈 燃,唐 波,奉大博,杨 阳,赵 媛,顾春进,陈 浩,赵恒兵. 川西李家沟伟晶岩型锂矿白云母短波红外光谱与矿物地球化学特性的相关性研究[J]. 光谱学与光谱分析, 2025, 45(05): 1355-1363.
HAN Jing-rui, RAN Feng-qin, PENG Bo, CHEN Ran, TANG Bo, FENG Da-bo, YANG Yang, ZHAO Yuan, GU Chun-jin, CHEN Hao, ZHAO Heng-bing. Examination of the Correlation Between Shortwave Infrared Spectra and Mineral Geochemical Characteristics of Muscovite in the Pegmatite-Type Lithium Deposit in Lijiagou, Western Sichuan. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(05): 1355-1363.
[1] Chang Z, Yang Z. Economic Geology, 2012, 107(7): 1479.
[2] Dehnavi S, Maghsoudi Y, Valadanzoej M. International Journal of Applied Earth Observation and Geoinformation, 2017, 55: 9.
[3] Liu L H, Chen J, Li X X, et al. Ore Geology Reviews, 2024, 165: 105868.
[4] Feng Y Z, Xiao B, Li R C, et al. Ore Geology Reviews, 2019, 112: 103062.
[5] Guo N, Thomas C, Tang J X, et al. Ore Geology Reviews, 2019, 108: 147.
[6] GUO Na, GUO Wen-bo, LIU Dong, et al(郭 娜, 郭文铂, 刘 栋, 等). Acta Petrologica Sinica(岩石学报), 2019, 35(3): 833.
[7] DAI Jing-jing, WANG Deng-hong, DAI Hong-zhang, et al(代晶晶, 王登红, 代鸿章, 等). Rock and Mineral Analysis(岩矿测试), 2018, 37(5): 507.
[8] WANG Shan-shan, ZHOU Ke-fa, BAI Yong, et al(王珊珊, 周可法, 白 泳, 等). Earth Science Frontiers(地学前缘), 2023, 30(5): 205.
[9] JIANG Hang, GUO Na, ZHANG Ke-fan, et al(蒋 航, 郭 娜, 张柯凡, 等). Acta Petrologica Sinica(岩石学报), 2024, 40(1): 197.
[10] ZHANG Hong, GAO Qing-nan, GUO Dong-xu(张 弘, 高卿楠, 郭东旭). Mineralogy and Petrology(矿物岩石), 2021, 41(1): 25.
[11] Fei G C, Menuge J F, Li Y Q, et al. Lithos, 2020, 364: 105555.
[12] Fei G C, Li T R, Menuge J F, et al. Lithos, 2023, 438: 107017.
[13] LUO Wei, PENG Jing, JIN Ting-fu, et al(罗 伟, 彭 静, 金廷福, 等). Sedimentary Geology and Tethyan Geology(沉积与特提斯地质), 2023, 43(1): 36.
[14] XU Qing-jun, YE Fa-wang, ZHANG Zhi-xin, et al(徐清俊, 叶发旺, 张志新, 等). World Nuclear Geoscience(世界核地质科学), 2024, 41(1): 47.
[15] WANG Zhen, CHEN Zhen-yu, LI Jian-kang, et al(王 臻, 陈振宇, 李建康, 等). Mineral Deposits(矿床地质), 2019, 38(5): 1039.
[16] XU Zhi-qin, WANG Ru-cheng, ZHAO Zhong-bao, et al(许志琴, 王汝成, 赵中宝, 等). Acta Geologica Sinica(地质学报), 2018, 92(6): 1091.
[17] Wang R, Cudahy T, Laukamp C, et al. Economic Geology, 2017, 112(5): 1153.
[18] He L, Lyu P Y, He Z W, et al. Minerals, 2022, 12(6): 692.
[19] Doublier M P, Roache T, Potel S. Geology, 2010, 38(11): 1031.
[20] TIAN Xiang-yu, WANG Rui, LIU Si-yu, et al(田祥雨, 王 瑞, 刘思宇, 等). Acta Petrologica Sinica(岩石学报), 2024, 40(9): 2944.
[21] Wang L, Percival J B, Hedenquist J W, et al. Economic Geology, 2021, 116(2): 389.
[22] Harraden C L, Mcnulty B A,Gregory M J. Economic Geology, 2013, 108(SI): 483.
[23] WANG Meng, LIU Xin-xing, LI Jian-kang, et al(王 猛, 刘新星, 李建康, 等). Acta Petrologica Sinica(岩石学报), 2023, 39(7): 2101.