Abstract:Hydrogen energy, as a clean energy source, is one of the important forms of replacing fossil fuels in the future, and hydrogen fuel cell vehicles are the most promising development direction for hydrogen energy applications. Different hydrogen production processes can lead to the presence of various trace impurities in hydrogen fuel, such as formaldehyde, formic acid, carbon monoxide, carbon dioxide, water, methane, ethane, propane, ethylene, halides, sulfur compounds, and particulate matter, which can cause varying degrees of damage to the battery system and affect the safe operation of fuel cell vehicles. Therefore, extremely strict standards have been established for domestic and international hydrogen purity and trace impurity limits. Both ISO14687—2:2019 and GB/T 37244—2018 standards recommend Fourier transform infrared spectroscopy to analyze some key impurities. After practice and improvement by our research group, it has been proven to be reliable and effective. In recent years, based on the principle of infrared spectroscopy, some emerging infrared spectroscopy technologies have been developed, including tunable semiconductor laser absorption spectroscopy (TDLAS), photoacoustic spectroscopy (PAS), cavity-enhanced absorption spectroscopy (CEAS) and cavity ring-down spectroscopy (CRDS), breaking through the limitations of traditional infrared spectroscopy technologies such as light sources and lasers.It is expected to be applied in the future analysis of trace impurities in hydrogen fuel.This article summarizes the analysis methods of 8 types of impurities in hydrogen fuel and deeply explores the application progress of Fourier transform infrared spectroscopy technology in analyzing these impurities. It summarizes the advantages and disadvantages of emerging infrared spectroscopy technology in trace gas analysis, and further prospects the methodological development trend of infrared spectroscopy.
Key words:Infrared spectroscopy;Fuel cell vehicles;Hydrogen;Trace amount of impurities
[1] ZHANG Jian-guang(张剑光). Chemical Design(化工设计), 2020, 30(1): 3.
[2] China Hydrogen Alliance(中国氢能联盟). China Hydrogen Energy and Fuel Cellindustry White Paper(中国氢能源及燃料电池产业白皮书). 2019-06-29. http://www.h2cn.org/publicati/215.html.
[3] International Standardization Organization. ISO 14687-2: 2019.
[4] Society of Automotive Engineers. SAE J2719—2015.
[5] State Administration for Market Regulation(国家市场监督管理总局). GB/T 37244—2018.
[6] National Health and Family Planning Commission(国家卫生和计划生育委员会). GBZ/T 300.112—2017.
[7] WANG Xiao, YAN Zhi-ming(汪 霄, 颜志明). Environmental Monitoring in China(中国环境监测), 2004, 20(2): 23.
[8] China Energy Conservation Association(中国节能协会). T/CECA-G 0182—2022.
[9] Ruzi M, Auchetti R, Ennis C, et al. ACS Earth and Space Chemistry, 2018, 2(10): 1011.
[10] American Society for Testing and Materials. ASTM D7653-24.
[11] China Energy Conservation Association(中国节能协会). T/CECA-G 0183—2022.
[12] YUAN Hui, LIU Dan, XU Guang-tong(袁 蕙,刘 丹,徐广通). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2024, 44(3): 853.
[13] The State Bureau of Quality and Technical Supervision(国家技术监督局). GB/T 16129—1995.
[14] Japanese Industry Standards Committee. JIS K0124: 2011.
[15] Japanese Industry Standards Committee. JIS K0114: 2012.
[16] American Society for Testing and Materials. ASTM D7892-15.
[17] China Energy Conservation Association(中国节能协会). T/CECA-G 0180—2022.
[18] American Society for Testing and Materials. ASTM D7941M-14.
[19] Ministry of Environmental Protection(环境保护部). HJ 533—2009.
[20] Ministry of Environmental Protection(环境保护部). HJ 534—2009.
[21] Ministry of Ecology and Environment(生态环境部). HJ 1076—2019.
[22] American Society for Testing and Materials. ASTM D7550-09.
[23] Supone Manakasettarm, Akira Takahashi, Tohru Kawamoto, et al. Analytical Chemistry, 2018, 90(7): 4856.
[24] American Society for Testing and Materials. ASTM D7649-10.
[25] Standards Press of China(中国标准出版社). GB/T8984—2008.
[26] China Energy Conservation Association(中国节能协会). T/CECA-G 0181—2022.
[27] ZHUO Ji-bin(卓继斌). Fujian Analysis and Testing(福建分析测试), 2023, 32(1): 28.
[28] Michael B Esler, David W T Griffith, Stephen R Wilson, et al. Analytical Chemistry, 2000, 72(1): 206.
[29] Ahmad EI-Hellani, Samira AI-Moussawi, Rachel EI-Hage, et al. ChemicalResearch in Toxicology, 2019, 32(2): 312.
[30] Japanese Industrial Standards Committee. JIS K0225: 2002.
[31] Standards Press of China(中国标准出版社). GB/T5832.2—2016.
[32] American Society for Testing and Materials. ASTM D7675-11.
[33] China Energy Conservation Association(中国节能协会). T/CECA-G 0179—2022.
[34] LI Hao, MA Xu, XING Shao-song, et al(李 浩,马 旭,邢少松,等). Journal of Tianjin University of Technology(天津大学理学学报), 2024.
[35] GU Zong-zhen, DONG Yin-li, PAN Shu-yan(顾宗珍,董银利,潘姝言). Engineering Technology(工程技术), 2016, 5: 241.
[36] WANG Min-tao, CHAI Hua, ZENG Chang-hua,et al(王民涛,柴 华,曾昌华,等). Zhejiang Chemical Industry(浙江化工), 2014, 45(8): 49.
[37] Serena Stephenson, Maria Pollard, Kipchirchir Boit. Applies Spectroscopy, 2013, 67(9): 1019.
[38] YE Xiang-ping(叶相平). Low Temperature and Specialty Gases(低温与特气),2014, 32(3):34.
[39] Karlovets E V, Kassi S, Campargue A,et al. Elsevier BV; Elsevier Ltd; Pergamon, 2020.
[40] CUI Hu-xiong, DONG Fan, ZHOU Xiao-feng, et al(崔虎雄,董 凡,周晓峰,等). Environmental Monitoring and Forewarning(环境监控与预警),2023, 15(5): 52.
[41] CHAO Xing, HU Zhen, ZHU Ning(超 星, 胡 臻, 朱 宁). Acta Photonicasinica(光子学报), 2023, 52(3): 0352102.
[42] Schmohl A, Mikios A, Hess P. Applied Optics, 2002, 41(9): 1815.
[43] Lewicki R, Wysocki G, Kosterev A A, et al. Applied Physics B, 2007, 87(1): 157.
[44] Dong L, Lewicki R, Liu K, et al. Applied Physics B, 2012, 107(2): 275.
[45] Ma Y, Lewicki R, Razeghi M, et al. Optics Express, 2013, 21(1): 1008.
[46] LI Jin-yi, LI Lian-hui, ZHAO Shuo, et al(李金义,李连辉,赵 烁,等). Progress in Laser and Optoelectronics(激光与光电子学进展), 2022, (59):13.
[47] Arrhenius K, Oliver Buker, Andreas Fischer, et al. Measurement Science and Technology, 2020, 31(7): 075010.