Analysis of Near-Infrared Anharmonic Vibration Spectra of Amino Acids
Using Density Functional Theory
TANG Yan1, 3, WU Jia1, XU Jian-jie2*, GUO Teng-xiao2, HU Jian-bo1, 4, ZHANG Hang4, LIU Yong-gang5*, YANG Yun-fan4
1. State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
2. State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
3. Chongqing Tsingshan Industrial Co., Ltd., Chongqing 402776, China
4. Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
5. Analysis and Testing Center, Southwest University of Science and Technology, Mianyang 621010, China
Abstract:Amino acids play an important role in organisms as the basic building blocks of proteins. The functions of amino acids with different group compositions and chiral structures are different, showing an urgent requirement to identify the basic chemical structure and molecular vibration information. This will provide an important theoretical basis for constructing basic biomolecule spectra and structural correlation models. NIR spectrum mainly shows the first overtone and binary combination vibration information of various hydrogen-containing groups (such as O—H, N—H, C—H, etc.). The vibration information is relatively complex, coupled with the resolution limitations of conventional infrared spectroscopy instruments and other reasons, resulting in a spectrum of experimental results. The band becomes wider, and its vibration mode cannot be accurately identified, making analysis more difficult. The theoretical calculation can independently calculate each vibration mode, providing clearer spectral information, and then analyze the wide absorption band obtained experimentally. This makes it easier to identify and analyze the structural vibration information of various groups in different molecular systems. In this work, the DFT calculation method carried out the structure optimization and anharmonic vibration analysis of three amino acids (glutamic acid, cysteine, glycine) and polypeptide (glutathione) composed of these three amino acids. The high-precision NIR spectrum of the four molecules in the band of 7 500~4 500 cm-1 was calculated, and detailed band assignments were made, dividing the entire near-infrared band into three spectral regions dependent on the vibration intensity. Furthermore, the influence of structure and constituent groups on the spectral characteristics was explored, and the corresponding relationships between the spectra and the structure were established. Our research would provide ideas for a deeper understanding of the structural properties of amino acids and peptides.
[1] Kaspar H, Dettmer K, Gronwald W, et al. Analytical and Bioanalytical Chemistry, 2009, 393(2): 445.
[2] Ballantyne J. Fish Physiology, 2001, 20: 77.
[3] Barth A. Progress in Biophysics & Molecular Biology, 2000, 74(3-5): 141.
[4] Pinto S M V, Tasinato N, Barone V, et al. Physical Chemistry Chemical Physics, 2020, 22(5): 3008.
[5] Zheng G, Bao Z, Pérez-Juste J, et al. Angewandte Chemie International Edition, 2018, 57(50): 16452.
[6] Heigl N, Huck C W, Rainer M, et al. Amino Acids, 2006, 31(1): 45.
[7] Barth A. Biochimica et Biophysica Acta, 2007, 1767(9): 1073.
[8] Kačuráková M, Wilson R H. Carbohydrate Polymers, 2001, 44(4): 291.
[9] Ferrari M, Mottola L, Quaresima V. Canadian Journal of Applied Physiology, 2004, 29(4): 463.
[10] Marin T, Moore J. Advances in Neonatal Care, 2011, 11(6): 382.
[11] Pasquini C. Analytica Chimica Acta, 2018, 1026: 8.
[12] Ma L, Peng Y, Pei Y, et al. Scientific Reports, 2019, 9(1): 9503.
[13] Cherfi A, Fevotte G, Novat C. Journal of Applied Polymer Science, 2002, 85(12): 2510.
[14] Farag A A M. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2006, 65(3-4): 667.
[15] Hyun H, Owens E A, Narayana L, et al. RSC Advances, 2014, 4(102): 58762.
[16] Bao K, Nasr K A, Hyun H, et al. Theranostics, 2015, 5(6): 609.
[17] Ramkumaar G R, Shalini M B, Gunasekaran S, et al. Molecular Simulation, 2015, 41(4): 333.
[18] Kumar J K, Gunasekaran S, Loganathan S, et al. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 2013, 115: 730.
[19] Xue J T, Shi Y L, Ye L M, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 205: 419.
[20] Liu R, Sun Q, Hu T, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 192: 75.
[21] Xu L, Sun W, Wu C, et al. Molecules, 2019, 24(8): 1550.
[22] Ji W, Viscarra Rossel R A, Shi Z. European Journal of Soil Science, 2015, 66(3): 555.
[23] Gredilla A, De Vallejuelo S F-O, Elejoste N, et al. TRAC Trends in Analytical Chemistry, 2016, 76: 30.
[24] Büning-Pfaue H. Food Chemistry, 2003, 82(1): 107.
[25] Li C, Guo H, Zong B, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 206: 254.
[26] Xie L, Ying Y, Ying T. Journal of Food Engineering, 2009, 94(1): 34.
[27] Zou X B, Zhao J W, Povey M J, et al. Analytica Chimica Acta, 2010, 667(1-2): 14.
[28] Koljonen J, Nordling T E M, Alander J T. Journal of Near Infrared Spectroscopy, 2008, 16(3): 189.
[29] Roggo Y, Chalus P, Maurer L, et al. Journal of Pharmaceutical and Biomedical Analysis, 2007, 44(3): 683.
[30] Small G W. TRAC Trends in Analytical Chemistry, 2006, 25(11): 1057.
[31] Grabska J, Ishigaki M, Bec K B, et al. The Journal of Physical Chemistry A, 2017, 121(18): 3437.
[32] Mcdonald D C, Wagner J P, McCoy A B, et al. The Journal of Physical Chemistry Letters, 2018, 9(19): 5664.
[33] Su T, Sun Y, Han L, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 266: 120417.
[34] Chen Y, Morisawa Y, Futami Y, et al. The Journal of Physical Chemistry A, 2014, 118(14): 2576.
[35] Czarnecki M A, Morisawa Y, Katsumoto Y, et al. Physical Chemistry Chemical Physics, 2021, 23(35): 19188.
[36] Bec K B, Futami Y, Wojcik M J, et al. Physical Chemistry Chemical Physics, 2016, 18(19): 13666.
[37] Grabska J, Bec K B, Ozaki Y, et al. The Journal of Physical Chemistry A, 2017, 121(9): 1950.
[38] Lopes Jesus A, Rosado M T, Leitão M L P, et al. The Journal of Physical Chemistry A, 2003, 107(19): 3891.
[39] Bec K B, Grabska J, Kirchler C G, et al. Journal of Molecular Liquids, 2018, 268: 895.
[40] Barone V. The Journal of Chemical Physics, 2005, 122(1): 014108.
[41] Grabska J, Bec K B, Ishigaki M, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 185: 35.
[42] Bec K B, Grabska J, Czarnecki M A. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 197: 176.
[43] Grimme S. The Journal of Chemical Physics, 2006, 124(3): 034108.
[44] Weigend F, Ahlrichs R. Physical Chemistry Chemical Physics, 2005, 7(18): 3297.
[45] Grimme S, Ehrlich S, Goerigk L. Journal of Computational Chemistry, 2011, 32(7): 1456.
[46] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 16, Revision C.01, Gaussion, Inc., Wallingford C T, 2016.
[47] Lu T, Chen F. Journal of Computational Chemistry, 2012, 33(5): 580.
[48] Humphrey W, Dalke A, Schulten K. Journal of Molecular Graphics, 1996, 14(1): 33.
[49] Johnson E R, Keinan S, Mori-Sánchez P, et al. Journal of the American Chemical Society, 2010, 132(18): 6498.
[50] Sutton L E. Tables of Interatomic Distances and Configuration in Molecules and Ions. Special Publication No.11, The Chemical Society, Burlington House, W.1, London, 1958.
[51] Kemnitz C. Spectroscopic Inverstigation on Glutamic Acid by Coulomb PerkinElmer informatics. Cambridge: CambridgeSoft, 2002.
[52] Iijima K, Tanaka K, Onuma S. Journal of Molecular Structure, 1991, 246(3-4): 257.
[53] Görbitz C H. Acta Chemica Scandinavic B, 1987, 41: 362.
[54] Grabska J, Bec K B, Ishigaki M, et al. The Journal of Physical Chemistry B, 2018, 122(27): 6931.