Research Progress of Surface-Enhance Raman Scatting Spectrum for
miRNAs Detection
LIU Hui-qiao1, 2, FU Jin-jin1, WANG Si-tian1, ZHANG Jia-kun1, HE Ya-nan1, CAO Kang-zhe1
1. College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
2. Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang 464000, China
Abstract:Surface-enhance Raman scatting (SERS) has been widely used in biomedical detection due to its high sensitivity, non-invasive, multi-channel detection and other characteristics. The abnormal expression of microribonucleic acid (miRNAs) has been found to be associated with a variety of diseases, and miRNAs have become a novel biomarker. The development of simple, sensitive and reliable miRNAs detection methods is of great significance for studying biological function, medical diagnosis, disease treatment and targeted drug research of miRNAs. Nano-SERS probes combined with nucleic acid signal amplification strategy showed high sensitivity for miRNAs detection. However, the components in the actual samples are complex, resulting in background signal interference detection results, and the tedious separation and purification process increases the detection time. Researchers have recently combined other techniques to optimize detection, improve sample throughput, simplify operations, reduce analysis time, and improve resolution. This paper mainly introduces the latest progress in miRNAs detection method based on SERS technology, discusses the advantages and necessity of technology fusion, and summarises the existing problems of miRNAs detection based on SERS technology for clinical detection, aiming to provide a reference for the design of a new fast, sensitive and reliable miRNAs detection platform.
刘会俏,付金金,王思甜,张家坤,何亚楠,曹康哲. 表面增强拉曼散射光谱在miRNAs检测中的研究进展[J]. 光谱学与光谱分析, 2024, 44(08): 2111-2119.
LIU Hui-qiao, FU Jin-jin, WANG Si-tian, ZHANG Jia-kun, HE Ya-nan, CAO Kang-zhe. Research Progress of Surface-Enhance Raman Scatting Spectrum for
miRNAs Detection. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(08): 2111-2119.
[1] Kneipp K, Kneipp H, Itzkan I, et al. Chemical Reviews, 1999, 99(10): 2957.
[2] Kneipp K, Wang Y, Kneipp H, et al. Chemical Physics Letters, 1997, 78: 1667.
[3] Nie S, Emory S R. Science, 1997, 275: 1102.
[4] Zhang Y, Gu Y, He J, et al. Nature Communications, 2019, 10: 3905.
[5] Wang Y, Yan B, Chen L. Chemical Reviews,2013, 113(3): 1391.
[6] Xu C, Xu H, Xu Yi, et al. ACS Nano,2020, 14(1): 28.
[7] Stacey L, Lauren E J, Karen F, et al. Nature Reviews Chemistry, 2017, 1: 0060.
[8] Ye J, Xu M, Tian X, et al. Journal of Pharmaceutical Analysis, 2019, 9: 217.
[9] Zhang J, Luo Q, Li X, et al. Biomarker Research, 2023, 11: 86.
[10] Usman F, Dennis J O, Aljameel A I, et al. Chemosensors, 2021, 9: 326.
[11] Lucarini V, Nardozi D, Angiolini V, et al. Biomedicines, 2023, 11(6): 1761.
[12] Renner A M, Derichsweiler C, Ilyas S, et al. Biomaterial Science, 2022, 10: 1113.
[13] Boyero L, Noguera Uclés J F, Castillo Peña A, et al. Cancers, 2023, 15(5): 1466.
[14] Forte G, Ventimiglia G, Pesaturo M, et al. Biotechnology Journal, 2022, 17(6): 2100587.
[15] Ideozu J E, Zhang X, Rangaraj V, et al. Scientific Reports, 2019, 9: 15483.
[16] Kong X, Wang J, Lv S, et al. Analytica Chimica Acta, 2023, 1247: 340894.
[17] Wen Y, Liu W, Wang J, et al. Analytical Chemistry, 2023, 95(32): 12152.
[18] Jiang P, Bai Y, Yan L, et al. Analytical Chemistry, 2023, 95(19): 7676.
[19] Napoletano S, Battista E, Martone N, et al. Talanta, 2023, 259: 124468.
[20] Zhu Y, Wang P, Ma Q, et al. Chemical Engineering Journal, 2023, 469: 144025.
[21] Jiao S, Liu L, Xing Y, et al. Sensors and Actuators B: Chemical, 2023, 383: 133578.
[22] Jiang Ling, Du J, Xu H, et al. Analytical Chemistry, 2023, 95(2): 1193.
[23] Hu C, Zhang L, Yang Z, et al. Analytica Chimica Acta, 2021, 1174: 338715.
[24] Ban E, Song E. Genes, 2022, 13(2): 328.
[25] Lu X, Hu C, Jia D, et al. Nano Letters, 2021, 21(15): 6718.
[26] Sun J, Sun X. Trends in Analytical Chemistry, 2020, 127: 115900.
[27] Fleischmann M, Hendra P J, McQuillan A J. Chemical Physics Letters, 1974, 26(2): 163.
[28] Valley N, Greeneltch N, Van Duyne R P, et al. The Journal of Physical Chemistry Letters, 2013, 4(16): 2599.
[29] Ding S, Yi J, Li J, et al. Nature Reviews Materials, 2016, 1: 16021.
[30] Zhou W, Li Q, Liu H, et al. ACS Nano, 2017, 11(4): 3532.
[31] Lombardi J R, Birke R L. The Journal of Chemical Physics, 1998, 108: 5013.
[32] Etchegoin P G. Physical Chemistry Chemical Physics, 2009, 11(34): 7348.
[33] Grasseschi D, Toma H E. Coordination Chemistry Reviews, 2017, 333: 108.
[34] Moldovan R, Vereshchagina E, Milenko K, et al. Analytica Chimica Acta, 2022, 1209: 339250.
[35] SONG Chun-yuan, CHEN Wen-qiang, YANG Yan-jun, et al(宋春元, 陈文蔷, 杨琰君,等). Progress in Chemistry(化学进展), 2015, 27(1): 91.
[36] Liu H, Gao X, Xu C, et al. Theranostics, 2022, 12(4): 1870.
[37] Li J, Liu H, Rong P, et al. Nanoscale, 2018, 10(17): 8292.
[38] Liao X, Zhang C, Qiu S, et al. Talanta, 2022, 244: 123402.
[39] Chen R, Shi H, Meng X, et al. Analytical Chemistry, 2019, 91(5): 3597.
[40] Liang Z, Zhou J, Petti L, et al. Analyst, 2019, 144(5): 1741.
[41] Zhou H, Zhang J, Li B, et al. Analytical Chemistry, 2021, 93(15): 6120.
[42] Liu H, Li Q, Li M, et al. Analytical Chemistry, 2017, 89(9): 4776.
[43] Si Y, Xu L, Deng T, et al. ACS Sensors, 2020, 5(12): 4009.
[44] Sun Y, Fang L, Yi Y, et al. Journal of Nanobiotechnology, 2022, 20(1): 285.
[45] Wen S, Su Y, Dai C, et al. Analytical Chemistry, 2019, 91(19): 12298.
[46] Chen J, Wu Y, Fu C, et al. Biosensors and Bioelectronics, 2019, 143: 111619.
[47] Liu L, Shangguan C, Guo J, et al. Advanced Optical Materials, 2020, 8(23): 2001214.
[48] Zhang H, Fu C, Yi Y, et al. Analytical Methods, 2018, 10(6): 624.
[49] Chen T, Wu Q, Cao S, et al. Chemical Engineering Journal, 2022, 430: 132887.
[50] Zhang H, Fu C, Wu S, et al. Analytical Methods, 2019, 11(6): 783.
[51] Ma W, Liu L, Zhang X, et al. Analytica Chimica Acta, 2022, 1221: 340139.
[52] Zhai J, Li X, Zhang J, et al. Sensors and Actuators B: Chemical, 2022, 368: 132245.
[53] Song C, Zhang J, Jiang X, et al. Biosensors and Bioelectronics, 2021, 190: 113376.
[54] Li G, Niu P, Ge S, et al. Frontiers in Molecular Biosciences, 2022, 8: 813007.
[55] Mao Y, Sun Y, Xue J, et al. Analytica Chimica Acta, 2021, 1178: 338800.
[56] Lin X, Lin D, Chen Y, et al. Advanced Functional Materials, 2021, 31(51): 2103382.
[57] Zhao Y, Fang X, Bai M, et al. Chinese Chemical Letters, 2022, 33(4): 2101.
[58] Jiang S, Li Q, Wang C, et al. ACS Sensors, 2021, 6(3): 852.
[59] Sun J, Song Y, Wang M, et al. ACS Applied Materials & Interfaces, 2022, 14(32): 37088.
[60] Ma L, Ye S, Wang X, et al. ACS Sensors, 2021, 6(3): 1392.
[61] Cao X, Wang Z, Bi L, et al. Nanoscale, 2020, 12:1513.
[62] Lv J, Chang S, Chen H, et al. Biosensors and Bioelectronics, 2023, 234: 115325.
[63] Zhang J, Zhang H, Ye S, et al. Analytical Chemistry, 2021, 93(3): 1466.
[64] Wang J, Zhang C, Liu Z, et al. Analytical Chemistry, 2021, 93(41): 13755.
[65] Liu X, Wang X, Ye S, et al. ACS Applied Materials & Interfaces, 2021, 13(24): 27825.